
TRUST RELATIONSHIPS, NAMING, AND SECURE COMMUNICATION
IN LARGE DISTRffiUTED COMPUTER SYSTEMS

A DISSERTATION
SUBMMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF DOCfOR OF PHILOSOPHY
IN COMPUTER SCIENCE

IN THE GRADUATE DIVISION
OF THE UNIVERSITY OF CALIFORNIA, BERKELEY

by

P. Venkata Rangan

September 1988

-I

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
SEP 1988 2. REPORT TYPE

3. DATES COVERED
 00-00-1988 to 00-00-1988

4. TITLE AND SUBTITLE
Trust Relationships, Naming, and Secure Communication In Large
Distributed Computer Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Computing systems are evolving into distributed systems that interconnect competing organizations and
individuals, and even countries, using high-speed global networks. The relationships among these entities
are characterized by the need for competition and cooperation without a common trusted agent. To build
such distributed systems that incorporate lack of global trust in them, it is necessary first to understand
precisely what trust consists of and then to categorize it. This thesis develops an axiomatic theory of trust
in distributed systems. The theory is based on modal logics of belief. We present systematic methods for
synthesizing protocols that implement a given trust specification. Trust is primarily required to establish
channels for secure communication. We present methods for reasoning about trusts required by various
channel establishment mechanisms. Channel establishment mechanisms are commonly based on either
public key encryption (PKE) or single key encryption (SKE). PKE-based mechanism require ternary trust
relationships known as authenticity trusts. SKE-based mechanisms have much larger trust requirements.
Starting from the differences in trust requirements of PKE and SKE, we derive several advantages of the
former over the latter. Our analyses provide insight into the trust structure and limitations of various
mechanisms. We show that a distributed system must provide a tree of channels at system configuration
time, and that this tree also represents the system’s global name space. We develop polynomial-time
algorithms for synthesizing name spaces so as to satisfy an a priori given set of trust specifications. We
present some interesting duality results and NP-completeness results with regard to some variations of the
synthesis problems. Sample runs of the polynomial-time algorithms show that small differences in trust
relationships can cause substantial differences in the structure of the name spaces. Trust requirements and
the performance of channel establishment can be traded for each other. If channels are PKE-based,
slightly increasing the trust requirements can greatly increase the performance of channel establishment.
However, if channel composition is SKE-based, global trusts, which may not be satisfied in the system’s
name space, are required for significant improvements in performance.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

134

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Trust Relationships, Naming, and Secure Communication
in Large Distributed Computer Systems

Copyright© 1988
by

P. Venkata Rangan

Trust Relationships, Naming, and Secure Communication
in Large Distributed Computer Systems

by

P. V enkata Rang an

ABSTRACT

Computing systems are evolving into distributed systems that interconnect competing
organizations and individuals, and even countries, using high-speed global networks. The rela­
tionships among these entities are characterized by the need for competition and cooperation
without a common trusted agent To build such distributed systems that incorporate lack of
global trust in them, it is necessary first to understand precisely what trust consists of and then
to categorize it. This thesis develops an axiomatic theory of trust in distributed systems. The
theory is based on modal logics of belief. We present systematic methods for synthesizing pro­
tocols that implement a given trust specification.

Trust is primarily required to establish channels for secure communication. We present
methods for reasoning about trusts required by various channel establishment mechanisms.
Channel establishment mechanisms are commonly based on either public key encryption (PKE)
or single key encryption (SKE). PKE-based mechanisms require ternary trust relationships
known as authenticity trusts. SKE-based mechanisms have much larger trust requirements.
Starting from the differences in trust requirements of PKE and SKE, we derive several advan­
tages of the former over the latter. Our analyses provide insight into the trust structure and limi­
tations of various mechanisms.

We show that a distributed system must provide a tree of channels at system configuration
time, and that this tree also represents the system's global name space. We develop
polynomial-time algorithms for synthesizing name spaces so as to satisfy an a priori given set
of trust specifications. We present some interesting duality results and NP-completeness results
with regard to some variations of the synthesis problems. Sampie runs of the polynomiai-time
algorithms show that small differences in trust relationships can cause substantial differences in
the structure of the name spaces.

Trust requirements and the performance of channel establishment can be traded for each
other. If channels are PKE-based, slightly increasing the trust requirements can greatly increase
the performance of channel establishment. However, if channel composition is SKE-based, glo­
bal trusts, which may not be satisfied in the system's name space, are required for significant
improvements in performance.

vr airman ~~-------l-- ------------------
(Professor menico Ferrari)

Acknowledgements

I cannot find words to express my utmost gratitude to Professor Domenico Ferrari for his
constant guidance, encouragement and support. Domenico is a perfect researcher and teacher. I
will always cherish all that I learned from him. His warmth as a human being has been limit­
less.

I am highly thankful to Professor Luis-Felipe Cabrera for his ideas and guidance. I would
like to thank Professor David Anderson for his guidance in the initial stages of my research.
David's insistence on precision played a major role in shaping the directions of my research.
The work reported in Chapter 5 on ADP is joint with David, Domenico and Bruno Sartirana. I
highly enjoyed working with Bruno on the ADP software and experiments in DASH. I am
thankful to Professor Ramamoorthy for his guidance and encouragement, and to Professor
Charles Stone for serving on my thesis committee. I would like to thank Professor Richard
Kemmerer of UCSB for his encouragement

I have benefited very much from discussions with numerous friends. Joe Pasquale and
Stuart Sechrest have provided me with guidance and help on innumerable occasions. I will
always treasure their friendship. Shin-Yuan Tzou was highly helpful during the writing of the
ADP software. I thank all the members of the Progres research group at Berkeley, in particular,
Hamid Bahadori, Peter Danzig, Kevin Fall, Vijay Garg, Riccardo Gusella, Diane Hemek, Harry
Rubin, Keshav Srinivasan, Mark Sullivan, Dinesh Verma and Songnian Zhou for their friend­
ship and help. I cannot think of a more dynamic and friendly research group than the Progres
Group. Stuart has been instrumental in making Progres a very enjoyable and friendly group to
be part of. Discussions with Stuart have greatly contributed to my appreciation of the American
culture and society.

I owe my life's work and inspiration to my parents, Nagarathnamma and Prasanna Kumar,
who are models of perfection in every walk of life, whose teaching and training have brought
me where I am today, and whose love and care are so abundant that I can never repay, and to
Chinmayanandaji, whose exposition of the Bhagavadh Geetha has been the driving force
through out my life. My brother, Sreerang Rajan, has been a source of wisdom, and, my little
brother, Srihari Sampath Kumar, has been a constant source of enthusiasm.

1bis work was partially sponsered by an IBM Doctoral Fellowship, by the Defense
Advanced Research Projects Agency (DoD), ARPA Order No. 4871, monitored by the Naval
Electronic Systems Command under Contract No. N00039-84-C-0089, by the IBM Corpora­
tion, by Olivetti S.p.A., by MICOM-Interlan, Inc., by CSELT S.p.A., by Hitachi, by Cray
Research, and by the University of California under the MICRO Program.

Invocation

The inspiration for my pursuit of doctoral research comes from the challenge of discover­

ing an answer to the following question posed in the ancient Indian philosophical texts of the

Mundaka Upanyshadh and the Bhagavadh Geetha.

Shaunako hy vai mahiishiitho angyrasam vydhyvad upiisannah prapaccha:

"Kasmynnu bhagavo vygniithe, sarvamydam vygniitham bhavathythy ?"

In ancient times, Shaunaka approached Angyras and asked:

"What is That, by knowing Which, everything else becomes known?"

l1

-!

To my parents: Amma and Anna

111

TABLE OF CONTENTS

Chapter 1. INTRODUCTION ... 1

1.1. Motivation 1

1.2. Trust Relationships, Naming and Secure Communication in Distributed

Systems ... 2

1.3. Relation to Previous Work ... 5

1.4. Outline of the Thesis .. 7

Chapter 2. AXIOMA TIZA TION OF TRUST ... 10

2.1. Introduction .. 10

2.2. An Approach to Axiomatization 11

2.2.1. Theories 11

2.2.2. A Logic for Trust ... 12

2.2.3. Logics of Belief .. 15

2.3. Modal Logic of Belief: A Review.. 15

2.3.1. Syntax... 15

2.3.2. Semantics ... 16

2.3.3. The Kripke Structure: A Formal Semantic Interpretation of

Belief.. 17

2.4. A Distributed System Model... 18

2.4.1.States .. 18

2.4.2. Possibility Relations... 19

2.4.3. Belief Acquisition .. 21

2.4.4. Sending Beliefs .. 22

2.5. A Logic of Belief for the Distributed System Model 22

2.6. A Theory of Trust... 24

2.7. Synthesizing Protocols from Abstract Trust Specifications........................... 25

2.8. Conclusion .. 34

Chapter 3. ANALYSIS ... 35

3.1. Introduction .. 35

3.2. Channels 36

3.2.1. Definition of Channel.. 36

3.2.2. Channel Establishment... 38

3.3. Atomic Propositions ... 40

3.4. Composition of Two PKE-based Independent Channels............................... 42

3.4.1. Trusts in PKE-based Channel Composition 42

3.4.2. Necessity and Sufficiency of Authenticity Trust 45

3.4.3. Semantic Interpretation of the Authenticity Trust 47

lV

v

3.5. Composition of Two SKE-based Independent Channels............................... 49

3.6. Composition of Two Dependent Channels .. 56

3.7. Composition of More Than Two Channels.. 61

3.7.1. Sequence ofPKE-based Channel Compositions 63

3.7.2. Sequence of SKE-based Channel Compositions 63

3.8. Differences between PKE and SKE Schemes .. 64

3.8.1. Differences Arising from the Forwarding Trust 67

3.8.2. Differences Arising from the Message Privacy Trust 68

3.8.3. Differences Arising from the Trust Against Masquerading 68

3.8.4. Differences Due to the Key Privacy Trust 68

3.8.5. Differences with Regard to Replication ... 69

3.9. Conclusion .. 71

Chapter 4. SYNTIIESIS .. 72

4.1. Introduction .. 72

4.2. Necessity of Fast Channel Establishment Procedures in a VLDS 73

4.3. Channel Composition Algorithms ... 79

4.3.1. Iterative Channel Composition .. 80

4.3.2. Recursive Channel Composition .. 81

4.4. Trust Specifications .. 86

4.5. Two-Agent Trust Specifications .. 87

4.5.1. Iterative and Recursive Channel Cc.nposition 88

4.5.2. Duality ·· 93
4.6. Name Space Synthesis Given Two-Agent Trusts and Iterative

Composition 94

4.6.1. The Synthesis Algorithm ... 94

4.6.2. Correctness and Complexity of Algorithm 4.1 97

4.6.3. NP-Completeness Results .. 99

4.7. 3-Agent Trust Specifications .. 106

4.7.1. Iterative and Recursive Composition... 107

4.7.2. Duality ·· 110
4.8. Name Space Synthesis Given Three-Agent Trusts and Iterative

Composition Ill

4.8.1. The Synthesis Algorithm ... 111

4.8.2. Leaf Node Deletion Algorithm .. 117

4.8.3. Independence Properties of Duplicate Elimination in

Algorithm 4.3 ... 118

4.8.4. Correctness of Algorithm 4.3 ... 123

4.8.5. Complexity of Algorithm 4.3 ... 125

4.9. An Example.. 126

4.10. Conclusion .. 128

Chapter 5. TRADING TRUST REQUIREMENTS FOR PERFORMANCE 130

Vl

5.1. Introduction.. 131

5.2. A Model of Process Execution on Hosts.. 134

5.3. The Authenticated Datagram Protocol... 138

5.3.1. ADP Channels .. 139

5.3.2. Sending Certificates of Agents... 140

5.3.3. Messages on an ADP Channel ... 142

5.3.4. The ADP Oient Interface .. 143

5.3.5. Transmission of Oient Messages .. 144

5.3.6. Piggybacking .. 145

5.4. Trust Requirements of ADP ... 147

5.5. Trust Requirements of ADP When Name Space is SKE-based 153

5.6. Trust Domains .. 155

5.7. ADP versus Direct Establishment of Agent-to-Agent Channels 156

5. 7 .1. General Advantages of Subtransport Level Channel

Establishment ... 158

5.7.2. Disadvantages of Transport Level Channel Establishment 159

5.7.2.1. Secure RPC .. 160

5.7.2.2. Secure TCP .. 161

5.8. Experimental Verification .. 162

5.9. Conclusion.. 168

Chapter 6. CONCLUDING REMARKS .. 172

6.1. Conclusion 172

6.2. Future Work ... 174

BIBLIOGRAPHY .. 176

APPENDIX A ... 187

CHAPTER 1

INTRODUCTION

1.1. Motivation

A moment's reflection is sufficient to realize that computing systems are evolving into
very large distributed systems that interconnect competing organizations and individuals, and
even countries, using global networks (see Figure 1.1). The relationships among these entities
are characterized by the need for competition and cooperation, and by inherent conflicts of
interests. There are few policies that are agreeable to all of the entities, and, even in the case of
policies on which all the entities agree, there are no globally acceptable administrative authori­
ties to enforce the policies. Consequently, a very large distributed system (VLDS) spanning all
these entities will be characterized by the absence of globally trusted agents. The interconnect­
ing networks, owing to their ultra-high bandwidths [SIP86], will be capable of supporting
secure and integrated, but extremely fast access to non-local resources. A scenario in which
workstations and high-speed fibers replace telephones and telephone wires, and a VLDS inter­
connecting these workstations replaces the functions of most media (telephone, physical mail,
printed media, audio and video media) is not far from the real possibilities of the medium-tellll
future. The use of a VLDS for carrying out commercial operations such as bank transactions,
monetary transactions, and airline flight reservations is being seriously explored. Consequently,
the issues of security and trust become critical in a VLDS. A VLDS must maintain the security
and autonomy of its components without restricting the sharing of resources and without requir­
ing its components to place global trust in any entity.

Figure 1.1: A sample space of entities that might be spanned by a future distributed system

-I

2

To build such distributed systems that allow partial trust, it is necessary first to understand
precisely what trust consists of, and then to characterize it. In literature, the term ''trust'' is
used frequently but rarely defined [CGH81,EKW74,Sal74, Wei69] [Dif82,K1P79,Lan81]. The
kind of trust that underlies expressions such as "Alice trusts Bob" has never been adequately
characterized. Unless we make an effort to investigate trust and security, their inadequate
understanding will be a major obstacle to the commercial realization of very large distributed

systems.

1.2. Trust Relationships, Naming and Secure Communication in Distributed Systems

To see how trust is needed in a distributed system, consider the case of secure communi­
cation between two users, Alice and Ibara/d. Alice (actually, a process belonging to Alice) on
a host HA needs to communicate securely with lbaraki on another host H8 (see Figure 1.2(a)).

In distributed systems, secure communication between two agents is based on the notion
of a logical secure channel (or just a channel) between the two agents. A secure channel has
associated with it algorithms for securely sending and receiving messages on it. To communi­
cate securely, Alice must establish a secure channel to lbaraki. Secure channels are based on
encryption, and hence, to establish a secure channel to lbarak.i, Alice must obtain the encryption
key of lbarak.i [Den82,FNS75]. In a large distributed system, the database of encryption keys
cannot be replicated at each host, and hence encryption keys are stored and managed by authen­
tication servers [Lu86, NeS78, Ter]. Thus Alice must obtain lbarak.i 's encryption key from an
authentication server (Figure 1.2(b)). Since the security of communication between Alice and
lbaraki depends on the validity of the encryption key that Alice obtains from the authentication
server, infmmally we can say that Alice is placing trust in the authentication server with respect
to lbaraki.

Figure 1.2(c) shows a more general scenario in which the nodes labeled IBM, IBM -J,
USA, SONY -US, JAPAN and SONY are authenticaton servers managed by the respective
organizations. In the sequel, we will use the term agent to abstractly denote either a user or an
authentication server. We can draw some generalizations regarding secure channel establish­
ment between agents, such as that between Alice and lbarak.i. In any system, given a set of
existing secure channels (denoted by solid lines in Figufe 1.2(c)), the only way to establish a
new secure channel is by composing adjacent secure channels. Intuitively, considering the
example shown in Figure 1.2(c), to establish a new channel to lbaraki, Alice must receive
lbaraki's encryption key on one of Alice's existing channels, which in this case is Alice's chan­
nel to IBM. If we go back a step in the itinerary of lbarak.i's key, Tbaraki's key must have
arrived at IBM on one of the channels incident on IBM, and so on. Thus for Alice to establish a
channel to lbaraki, a sequence of adjacent channels must exist forming a path between Alice
and Ibarak.i. In fact, we will formally show in Chapter 3 that any secure channel establishment
consists of a sequence of channel compositions, with each composition involving two adjacent
channels.

There are two distinct problems in channel composition: (1) which are the channels to be
composed, and (2) in what order should these channels be composed. These two aspects of
channel composition give rise to different trust requirements in a distributed system. These
aspects are related to naming because of a reciprocal association between naming and channel
establishment: (1) resolving a name (i.e., translating human-readable names of agents to attri­
butes such as their location) requires the establishment of channels to name servers, and (2)
channel establishment requires translating names of agents to their encryption keys, for which a
name resolution procedure must be used. Thus, even though naming and channel establishment
can be realized separately, combining them into a single mechanism can result in higher

3

user~ ------!user
@ARAK])

kernel
.. ·.: .. ~::::::::::}:: ..

kernel

~----------~ ~----------~

(a)

ill ARAKI

(c)

Figure 1.2: Problem of trust in a VLDS. (a) Logical secure channel. (b) Adjacent channel
composition. (c) Channel establishment as a sequence of adjacent channel compositions.

performance. In the sequel, we will use the term name server synonymously with the term
authentication server.

It should be noted that the problems of trust in a distributed system are interesting in their
own right, irrespective of whether the distributed system is large or not However, efforts to
solve those problems are justified by their crucial importance to very large distributed systems.
Small distributed systems, such as those that do not span more than one organization, do not
have significant trust problems. In distributed systems that span more than one organization but
with a small number of organizations, trust problems are sufficiently simple that they can be
solved using informal methods. Only when a distributed system spans a large number of auto­
nomous organizations does the need for systematically characterizing the trust relationships in
the system arise. In fact, only in large distributed systems is there a need for storing encryption
keys at name servers. In small distributed systems, the database containing the encryption keys
of all agents can be replicated at each host, and the problem of trust in secure communication
disappears.

1.3. Relation to Previous Work

Most existing and proposed distributed systems make trust-related assumptions, though
often implicitly. A sample of these assumptions is as follows:

• All system-level components trust one another. Hosts trust each other, and agents trust all
name servers [Che84,MuT84, STB86]. Systems such as Amoeba [MuT84] further
assume that both the network and the network interfaces are secure.

4

• Hosts may not trust each other, but name servers are globally trusted [BLN82, SJR86].

Oearly these trust-related assumptions are incompatible with one or more of the characteristics
of very large distributed systems we projected in Section 1. Many of the trust-related assump­
tions made in current systems are based on the supposition that each distributed system has a
logically centralized administrative authority that can enforce policies and punish violators.
The absence of such a single administrative authority in a VLDS has significant trust-related
consequences. The agents in a VLDS have to cope with the inherent existence of lack of trust
and the associated possibilities for losses. A recent case involving a foreign company over
which the United States was unable to enforce its laws is an appropriate example. Thus, a
VLDS must not only allow lack of global trust but also incorporate explicit patterns of lack of

trust.

The Arpanet [8la, 8lb] is similar to a VLDS in that it spans a large number of organiza­
tions and individuals, and has a global name server [TPR84]. However, the Arpanet does not
have global authentication mechanisms, and hence it does not provide secure integrated access
to non-local resources. An agent must have independent accounts and passwords on each host
that it uses. The total lack of integration of services in the Arpanet prevents it from being a true
VLDS.

Birrell et al. [BLN86] consider naming and authentication in large distributed systems
without global trust. They suggest that an agent must be able to specify the sequence of name
servers to be trusted for establishing a channel. However, they neither give a precise meaning
to the notion of trust nor provide a precise analysis of the trust properties of various secure
channel establishment mechanisms. We give a precise notion of trust in Chapter 2, in Chapter 3
we analyze the trust properties of the various channel establishment mechanisms, and in
Chapter 5 we investigate trust properties of various network protocols for channel establish­
menL These analyses reveal surprising differences among, and limitations of, the various
mechanisms and protocols with regard to their trust properties. For instance, we show that, if
secure channels are based on single key encryption (rather than public key encryption), han­
dling channel establishment at the host-to-host level of the network protocol hierarchy requires
global trust.

Birrell et al. [BLN86] also suggest that, in order to choose the name servers trusted in
establishing a new channel, the channels to be composed must be chosen appropriately, and the
burden of choosing these channels is left to the users. In Chapter 4, we will develop algorithms
for synthesizing name servers so as to satisfy an a priori given set of trust specifications of
agents. Thus. the user is no longer burdened with choosing channels based on whom he or she
trusts; the design of the name server automatically takes care of the user's trust relationships.

Popek and Kline [KlP79,PoK79] compare trust properties in secure communication using
single key encryption and public key encryption, and conclude that the two have the same trust
properties. In Chapter 3, we will show that this conclusion, which they arrived at using an
informal notion of trust, is incorrect.

1.4. Outline of the Thesis

The goal of this thesis is to develop techniques by which distributed systems can be syn­
thesized so as to satisfy a given set of trust specifications. Such a synthesis will have to employ
some basic channel composition mechanisms. Before we can employ a channel composition
mechanism in a synthesis, we must know the trust relationships inherent in (and hence required
by) the mechanism. Thus, we must analyze the various channel composition mechanisms and
investigate the trust relationships they require. But before we can analyze a mechanism from

5

the viewpoint of the trust relationships it requires, we must precisely define what we mean by
trust. Thus, the dissertation will consist of the following sequence of steps.

Theory of Trust: To capture and incorporate lack of trust into a distributed system, it is neces­
sary first to understand precisely what trust consists of, and then to characterize it. Basic foun­
dations are necessary to clarify our understanding and to reason adequately about lack of trust in
distributed systems. A clear definition of trust in a distributed system can reveal subtle distinc­
tions that may not be otherwise apparent. Formal descriptions of security have traditionally
avoided any explicit treatment of trust. It is desirable to unify security and trust into a single
theory. To satisfy all these requirements, we develop an axiomatic theory of trust in Chapter 2.

Analysis: Formal analysis of trust can offer insights into the basic structure and the limitations
of mechanisms with regard to their trust requirements. Zero-trust mechanisms may be possible.
Chapter 3 analyzes trust relationships in various channel composition mechanisms. We develop
methods for reasoning about trust requirements in various mechanisms, and discuss methods for
arriving at the minimal trust requirements in a given distributed system. While doing so, we
will encounter some surprising differences among various mechanisms with regard to their trust
requirements.

Synthesis: The eventual goal of the thesis is to provide algorithms for synthesizing distributed
systems so as to satisfy a priori trust specifications of agents. As was shown in Section 2, trust
requirements arise in naming. Chapter 4 develops algorithms for synthesizing name servers
from trust specifications. A sample set of trust specifications may be as follows: "Alice never
sends false information to Bob about Fred, and Bob never sends false information to Riccardo
about Alice. Fred and Riccardo cannot be trusted to secretly store information about Bob or
Alice. Fred cannot be trusted for any information about any agent that Alice or Bob trust for
information about Riccardo." Or it may involve organizations as in, "IBM trusts DEC for Hita­
chi but not for AT&T".

No synthesis methodology is complete without performance considerations. Under some
conditions, trust requirements and performance of channel establishment mechanisms can be
traded for each other. Chapter 5 shows that, if channel composition is based on public key
encryption, slightly increasing the number of trust relationships that are satisfied can greatly
increase the performance of channel establishment mechanisms, and that the additional trust
relationships still form a subset of the set of trust specifications from which the distributed sys­
tem name space has been synthesized. We also show that, if channel composition is based on
single key encryption, global trust, which may not be s1tisfied in the system name space, is
required for significant improvements in performance.

Oearly the goals of the thesis are pragmatic, but the approach is partly formal. This work
was carried out as part of the DASH project at Berkeley [AFV87c], which is investigating
issues in the design and implementation of very large distributed systems.

CHAPTER 2

AXIOMATIZATION OF TRUST

This chapter develops an axiomatic theory of trust in distributed systems. The chapter

discusses what it means to develop a logic or a theory, and shows that modal logics of belief

with their semantic interpretation based on the possible worlds semantics of Kripke, are

appropriate as a starting point for a theory of trust We review a modal logic of belief that is an

enhancement of propositional logic with a belief operator, and construct a model of a distri­

buted system so that the logic is sound and complete with respect to the model. Any sentences
in the logic may then be added to the logic as axioms, and these axiomatic sentences are con­
sidered as trust specifications. The logic and the trust specifications, together with the model,

constitute a formal theory of trust for the target distributed system. However, a theory of trust

is of practical significance only if abstract trust specifications can be implemented in a real dis­
tributed system. We present formal techniques for synthesizing protocols that are necessary and

sufficient for implementing a given trust specification in a distributed system.

2.1. Introduction

To build distributed systems that capture and account for lack of global trust, it is first

necessary to understand precisely what trust consists of, and then to characterize it. Basic foun­

dations are needed to clarify our understanding and to reason adequately about lack of trust in

distributed systems. This chapter develops an axiomatic theory of trust for such systems. In
Section 2.2, we discuss basic notions of what it means to develop a logic or a theory, and show

that modal logics of belief are appropriate as bases for a theory of trust Section 2.3 reviews

modal logics of belief, and Section 2.4 presents a distributed system model. Section 2.5

presents a modal logic of belief that is sound and complete with respect to this model. In Sec­

tion 2.6, we develop a formal theory of trust, and, in Section 2. 7, we present methods for syn­

thesizing protocols that implement a given abstract trust specification. Finally, Section 2.8 con­

cludes the chapter.

2.2. An Approach to Axiomatization

2.2.1. Theories

Our first step, as we saw, is to capture the highly informal notion of trust into a formal

theory. The term theory is used here in the sense of Mendelson [Men87]. A theory is based on

a logic. Briefly, a logic consists of a language, which defines the set of well formed formulas

(WFFs) or valid sentences, a set of axioms, and a set of rules of inference. An axiom is a

WFF and a rule of inference is a transformation from one WFF to another. (We will shortly

define the roles played by axioms and rules of inference in a logic.) The logic provides a frame­

work for reasoning and abstracts some fundamental notions. A theory consists of a logic

enhanced with a set of assumptions that are particular to the real-world problem being modeled

by the theory. These assumptions are called proper axioms . To develop a theory of trust, we

must first start with a logic on which to base the theory.

A proof starts out from the axioms and the proper axioms, and repeatedly uses rules of

inference to arrive at a WFF. A WFF that is the result of a proof is called a theorem. The

6

7

theory is said to be consistent if for no WFF are both the WFF and its negation theorems in the
logic.

Each logic (theory) has a set of models which provide the semantic interpretation for the
logic (theory). The semantic interpretation is outside the logic and corresponds to the real­
world situation being modeled by the logic (theory). Assuming two-valued logics, a semantic
interpretation of a WFF under any assignment to variables in the WFF yields one of the two
values: true or false. A WFF whose semantic interpretation is true in a model under any assign­
ment to the variables in the WFF is said to be valid in the model. A WFF whose semantic
interpretation is true in a model under at least one assignment to the variables is said to be
satisfiable in the model.

A logic (theory) is said to be sound with respect to a model if and only if the theorems in
the logic (theory) are valid in the model. A logic can also be shown to be sound with respect to
a model if and only if the axioms of the logic are valid in the model and the rules of inference
are validity preserving. It can be shown that a theory is sound with respect to a model if and
only if the logic on which the theory is based is sound with respect to the model and the proper
axioms of the theory are valid in the model. Thus, the set of models with respect to which a
theory is sound is a subset of the set of models with respect to which the logic the theory is
based on is sound. A logic (theory) is said to be complete with respect to a model if and only if
all WFF that are valid in the model are theorems in the logic (theory).

To develop a formal theory of trust, we must first start with a logic on which to base the
theory.

2.2.2. A Logic for Trust

What kind of a logic is suitable for modeling trusts in distributed systems ? To answer
this question, consider the simplest case of secure communication.

To communicate securely, agents encrypt messages using keys belonging to other agents.
We may say that each agent must make assertions of propositions of the form
owner (key of the other agent, the other agent), where the semantic interpretation of
owner (key, agent) is that it returns true if and only if key belongs to agent. Thus, it seems
appropriate to consider propositions of this type as forming the atomic propositions of a logic of
trust. (An atomic proposition is a proposition representing a basic notion in the model at a
given level of abstraction.)

In a system in which the complete database of keys is securely replicated at every agent
using mechanisms external to the system (such as telephone conversations between agents, or
couriers), two agents can communicate securely without placing trust in a third agent. In a dis­
tributed system with distributed name servers, an agent has to obtain the keys of other agents
from name servers.

Figure 2.1 represents a distributed system in which there are agents Ai, A j and A~c, and
where Aj is a name server. There are two channels in the initial state, Ai-Aj, and ArA~c. A~c

sends a message msgkj containing its key keyk to Aj. When Ai sends a request to Aj asking for
A~c 's key, Aj sends a message msgji to_A; containing keyk. If the proposition owner(keyk, A~c)
cannot be proved false (i.e., if it is satisfiable and hence possible) at Ai, Ai may now consider
accepting key/c. However, Ai is not prepared to use keyk. for secure communication to A~c unless
it is able to prove that owner(key~c> A~c).

Suppose, to start with, that we make no assumptions whatsoever about security or about
the validity of the messages sent by one agent to another, and that the belief in a proposition is
used to represent an attitude by which the believer may not be able to prove the proposition

msg
kj

:owner(key, A)
k k

msg : B owner(key , A)
j i k k k

8

Figure 2.1: Messages and beliefs in secure communication. Secure communication chan­

nel Ai -Ak is to be established using name sexver A i .

valid but thinks the proposition might be valid. Thus, the belief of an agent corresponds to the

notion of having in the agent's database a proposition that is satisfiable so that, even though

there may be a measure of uncertainty about the validity of the proposition, the agent has strong
reasons to conjecture that the proposition might be valid in the real world. Specifically, let the

belief in a proposition p , denoted by B;p, indicate a relationship between an agent Ai and a

proposition p such that (a) Ai may not be able to assert the truth of p, (b) A; cannot prove p 's

falsity, and (c) Ai expects and desires p to be true. Thus, there may be a measure of uncertainty

about p 's validity, but there is a high likelihood that p might be valid.

Using this notion of belief, we might say that the message from At to Ai creates a belief

Bjowner(keyk, A1c). The message from Aj to Ai creates a belief B;Bjowner(keykt At). Thus,

A; believes that A i believes owner (keyk, Ak). This can be extended to a scenario in which the

key successively passes through several name sexvers during name resolution.

However, A; is not prepared to use keyk for secure communication to At unless it is able

to prove that owner (keyk, At) is valid. To infer owner (keyk, At) from its belief, Ai has to use

some assumptions such as that At does not usually send a false key, the key-parts of messages

msgtj and msgji are identical, and so on. Such assumptions are encapsulated into the notion of

trust, and are precisely abstracted by proper axioms. In this example, one possible proper

axiom may be "B;Biowner(keykt At) => owner(keyt- At)''. While a belief is an operator, a

trust is a proper axiom, i.e., a WFF that is assumed to be true in the system. Thus for instance, a

belief such as B;p denotes that A; believes that proposition p is true, while a WFF such as B;p
=> p is a trust denoting the assumption that, A; believes in p only when p is true. Agents use

trusts to make inferences about the validity of their beliefs.

It is easy to see that reasoning about trusts involves reasoning about the notion of belief,

and that a theory of trust may be based on a logic of belief. After all, one of the most desirable

properties of a formal theory is its ability to capture what people intend to say, and we have

arrived at the suitability of a logic of beliefs in the course of making natural statements about

secure communication. At this point it is useful to pause, and review the kinds of logics avail­

able to us for reasoning about beliefs in general.

9

2.2.3. Logics of Belief

Belief represents an attitude of an agent towards a proposition. A logic for expressing
propositional attitudes must be able to express the appropriate relations between believers and
attitudes [Hin62]. Classical first order logic does not handle these attitudes properly
[FaH85, HaM85]. Modal logics [HuC68], which enhance propositional and first-order predi­

cate logics with modal operators such as belief, have been found suitable for modeling belief. 1

2.3. Modal Logic of Belief: A Review

2.3.1. Syntax

In the language of the modal logic of belief, agents are named A 1, .•• , Am, and the atomic
propositions are denoted by p , q , . . . Let ''A'', '' V '' and '•-•' denote conjunction, disjunction
and complementation, respectively. Fori = 1, ... , m, let Bi be an operator, read as "agent Ai
believes". The set of WFFs is the smallest set that contains atomic propositions, is closed
under boolean connectives, and contains BiF (i = 1, ... , m) if it contains F. Since quantified
modal logics are not well understood, we restrict ourselves to using the propositional modal
logic for belief. However, when a variable x varies over a finite set X = {x 1, .•. , x11 }, "'Vx
F (x)" is used as a short-hand notation for F (x 1)A · · · AF (x11). Thus, ifF is a WFF, and x
varies over a finite set, 'V x F (x) is a WFF.

2.3.2. Semantics

Unlike classical logic operators, modal operators such as belief do not allow a truth­
functional semantic interpretation. (An operator is truth-functional if and only if, given any
WFF that is a result of applying the operator to some arguments, the truth value of the WFF can
be deduced solely from the truth values of the arguments. Belief is not a truth-functional opera­
tor because, belief in a proposition may be true or false irrespective of the truth value of the pro­
position.) Thus, modal logics use a possible -worlds semantics [HaM85, Kri63] in which the
notions of possibility and necessity are used, and the notion of a possible world is used in the

semantic interpretation. 2 A set of possible worlds is postulated, and a belief is true if it is true
in a set of possible worlds. The real world may be one of the possible worlds.

An agent's belief arises primarily because of the agent's ignorance about the global state
of the distributed system. An agent's state of belief relates to the level to which the agent can
determine the system's global state based on its local state. In each global state of the system,
one can associate with each agent a set of possible global states that are determined as follows:
if the agent's beliefs are true, any of them could possibly be the real global state. In other
words, based on its local state, an agent cannot determine the real global state that it is in; it can
only conclude that some global states are possible. An agent believes p, denoted by Bip, if and
only if p is true in all the global states that the agent considers possible. An agent does not
believe p if and only if, in at least one of the global states that the agent considers possible, p is
not true. Since this semantic interpretation of belief uses the notion of possible global states, it
is called the possible worlds semantics [Kri63].

1 As we will see later, modal logics use the notions of possibility and necessity. In medieval logic, possibility,

necessity, and so on, were thought of as modes in which a proposition could be true or false.

2 Halpern and Moses wrote an excellent paper on modal logics of belief and knowledge [HaM85]. The review

of modal logics presented in Section 2.3 of this chapter is based heavily on this paper.

10

In a future section we show that the addition of any proper axiom to a logic (giving rise to

a theory) requires the construction of a new set of models from the old set of models for which

the logic was sound and complete. This is to ensure that the theory is sound and complete for

the new set of models. If this cannot be ensured, then the theory may be ill suited for the new

set of models of the system, i.e., some statements that are provable as being true in the theory

may be actually false in the system, and some that are true in the system may be provable as

being false in the theory. Thus, it is necessary to ensure that the theory is sound and complete

for the new set of models. In the modal logic approach, by making minor changes to the possi­

ble worlds semantics, we can capture different problem situations. By imposing various con­

straints on what global states are considered possible by an agent in a given real global state,

one can capture a number of interesting notions of belief. For example, if the relation between

the global state and the set of possible global states is restricted to be transitive, then an agent

believes that it believes p , if it believes p . Since it lends itself to easy translation between a

proper axiom of a theory and its semantic interpretation in the model, the possible worlds

approach is a powerful tool for developing theories. Thus, we say that this approach is custom­

izable , i.e., with little effort a theory can be derived from a logic for a given security environ­

ment We have chosen this approach for our theory of trust

2.3.3. The Kripke Structure: A Formal Semantic Interpretation of Belief

Kripke [Kri63] introduced what is known as a Kripke structure as a fonnal model for

possible worlds semantics. Let S be the set of all global states, and <1> be the set of all atomic

propositions. A Kripke structure K is a tuple (S, 1t, p1, ... , Pm), where 1t is a truth assignment to

the atomic propositions of <1> for each global state s in S (i.e., V p , s such that p e <1> and s e S ,

1t(s, p) e {true, false}), m is the number of agents, and Pi, i = 1, ... , m, is a relation on the glo-

bal states in S. Pi is Ai 's possibility relation; (s, t) e Pi if and only if in global state 3 s Ai

considers the global state t as possible.

We will now review a fonnal definition of the truth of a WFF given using the relation I=, a

relation between states and WFFs [HaM85]. "s I= p" stands for "p is true ins" (which is

equivalent to, "w satisfies s ").

Vp e <1>, s I= p if and only if 1t(s, p) =true

s I= p A q if and only if s I= p and s I= q

s I= -p if and only if s l;e p

s I= Bip if and only ifVt such that (s, t) e Pi, t I= p

The last definition above fonnalizes the idea that an agent Ai believes p in global state s

if and only if p is true in all the states that Ai considers possible when the system is in states.

A WFF p is valid (or satisfiable) if and only if s I= p for all states s (or for some state s,

respectively). It may be observed that p is satisfiable if and only if -P is not valid.

In order to use this logic for reasoning about communication security, we have first to

relate distributed systems to Kripke structures.

3 In the sequel, we use the tenn stale synonymously with the tenn global stale except when explicitly men­

tioned that it is local stale. There is a distinction between a world and a global state, but, in the sequel, this distinc­

tion is unimportant, and we use them synonymously.

11

2.4. A Distributed System Model

2.4.1. States

A distributed system can be modeled as a set of agents communicating with each other via
messages. The state of the distributed system consists of the states of all its agents. The state

of an agent consists of its message history, which is the sequence of messages received or sent
by the agent. A message in the message history consists of a WFF, a sender, and a receiver. At
least one of either the sender or the receiver is the agent itself. Messages that are not of this for­
mat are not of interest to the agent and are not interpreted by the agent. To start with, we make
no assumptions about the security in the system: i.e., an agent may send or receive any message,
may masquerade as any other agent, and so on. An agent may impose any conditions for
accepting a message, such as a test for message authenticity. A non-accepted message does not
become a part of the agent's message history. The state of an agent uniquely detennines the
agent's beliefs.

Having defined states, we now define the possibility relations in a Kripke structure.

2.4.2. Possibility Relations

Consider a global state s in which the state of agent Ai is si. The following definitions
will be used:

MS (si, A1) =the sequence of messages in the message history of Ai in state si that were
sent toA1.

MR (si, A1) = the sequence of messages in the message history of Ai in state si that were
received from A i.

BR (si, A i) = the set of WFFs sent in the message sequence MR(si, A i).

Bel(si) =the set of beliefs ofAi in state si.

Let the symbol S denote the subsequence relationship between sequences or the subset relation­
ship between sets. The possibility relation Pi consists of all pairs of states s and t such that V

j .j~i:
(PCl) si = ti, i.e., the irh components of state s and state t are the same,

(PC2) MR(si , A i) s MS(t1 , Ai) (i.e., there is an authenticated channel from A i to Ai), and

(PC3) BR(si, A i) S Bel(t1) (i.e., A i has not lied about its beliefs to Ai).

We will refer to these three conditions as the possibility conditions with respect to si. Note
that each possibility relation is specific to an agent.

In effect, the possible states from the viewpoint of Ai are those states of the distributed
system in which all the messages in Ai 's message history are authentic and the senders of those
messages have not sent false messages to Ai (see Figure 2.2). Thus, Ai holds a limited optimis­
tic view of the possible distributed system states: the possible states are secure as far as Ai is
concerned. In the real state, agents might have sent false messages to, or masqueraded to A i.
Note that states in whichA1 has masqueraded to Ak> k~, or sent false beliefs to Ak are possible
from the viewpoint of Ai. As we will see, we will make use of trusts to turn a possible secure
state into the real state.

12

msg --..
2 •• .

J
..- msg .. /

/ .. ·········--.... ~gl 2

~ St
\0 msgl

(a) (b)

Figure 2.2: A possible state from the viewpoint of Ai and the real global state. (a) A possi­

ble global state from agent A; 's viewpoint: the possible global state consists of the real lo­

cal state si of Ai and a possible local state tj of Aj. In this possible global state, Aj has

sent messages msg 1 and msg2 to Ai and the WFFs that msg 1 or msg2 contain are true. (b)

The real global state consists of the real local states si and s j. In s j , A j has sent message

msg 1, the WFF contained in msg 1 is not true (Aj has lied to Ai), and Aj did not send

msg 2• Masquerading as A j, some other agent has sent msg 2 to Ai .

2.4.3. Belief Acquisition

What should agent Ai 's beliefs be? The semantic interpretation of a belief in a state si is

that the believed proposition is true in all the states in the possibility relation Pi corresponding

to si, i.e., in all the possible states. The system is not necessarily in one of the states considered

possible by Ai, and hence the believed proposition need not be true in the real world. Any

event in the system may trigger a belief acquisition or a belief revision. The events of interest

depend on the particular application. For simplicity, we only consider the reception of ames­

sage as resulting in a belief acquisition. When Ai receives a WFF f from an agent A j, Ai adds

the belief BiBjf to its belief database if and only if Bjf is consistent with the beliefs that Ai

has previously acquired as a consequence of a message from A j (i.e., if B j -! cannot be proved

from Ai 's current beliefs). Thus, incoming messages may cause an agent to add to its beliefs.

In the logic, WFFs received by Ai from two different agents will not be inconsistent with

eachother. Forexample,letAj sendaWFFf toAi,letAj send-/ toA~c,andletA~c sendB/f

to Ai. BiBjf, and B;B~c Bj -! are consistent with each other, and Ai will add both the beliefs.

The possible states from the viewpoint of Ai in this example include those in which Bjf is true

at Aj and Aj has sent a WFF -! to A.~: (thus, Bj -! is true at A.~:). as well as those in which Aj

has sent a WFF f to Ai. To see why agents may need to send beliefs in a real system, in the

example of Section 2.2.2 in which Ai establishes a channel to A~c using a name server Aj, A~c

sends its key keyle to A j, and the reception of key1e creates a belief B jowner (key1e, A ~e) in A j. Aj

sends this belief to Ai, and this creates a belief B;Bjowner(keyk, A~e) in A;. Notice that Aj must

send its belief, and not owner (keyk, A ~e) to A;, because, that keyk belongs to A~c is only a belief

of A j, and it is not certain if the key really belongs to Ak. Thus for instance, since we are not

making any assumptions about the security behavior of various agents at this point, some other

agent may have sent keyk masquerading as A1e.

13

2.4.4. Sending Beliefs

What beliefs can an agent A; send to another agent Aj ? A; can send any WFF, whether
or not the WFF is a belief of A;. However, Aj accepts a belief sent by A; only if the belief is

consistent with the beliefs that Aj has previously received from A;. Thus, A; is not allowed to

change its mind. It is not necessary that a WFF sent by Ai to Aj (1) be one of Ai 's beliefs, (2)
be consistent with A; 's beliefs, or (3) be consistent with the beliefs that A; sends to other agents.

2.5. A Logic of Belief for the Distributed System Model

The axioms and the inference rules for a logic of belief depend on the properties of the
possibility relations. The properties of interest are transitivity , euclidean property ,
serial property, and reflexivity. A relation p is transitive if and only ifV' s, t, u, ((s, t) e p and
(t, u) e p) => (s, u) e p. A relation p is euclidean if and only if\/ s, t, u, ((s, t) e p and (s, u)
e p) => (t, u) e p. A relation p is serial if and only if\/ s, =it such that (s, t) e p. A relation p
is reflexive if and only if\/ s, (s, s) e p. We now show that the possibility relations for our dis­
tributed system model satisfy exactly the first three of these properties.

\;fi, i = 1, ... , m:

(1) Transitivity: for any states s, t, and u, suppose (s, t) and (t, u) are in Pi. By the possi­
bility conditions, s; = ti and u; = ti. Thus, ui = si. For all j, j':t:i, tj satisfies the last two
possibility conditions with respect to si, and uj satisfies the last two possibility conditions
with respect to ti. However si = ti, and hence uj satisfies the last two possibility condi­
tions with respect to si. Thus (s, u) belongs to the possibility relation, and Pi is transi­
tive.

(2) Euclidean property: consider any two pairs (s, t) and (s, u) in Pi. We have si = ti and si
= ui . Thus, ti = ui. For all j, j '#i, uj satisfies the last two possibility conditions w.r.t si.
Since si = ti, uj satisfies the last two possibility conditions w.r.t. ti. Thus, all the three
possibility conditions are satisfied for the pair (t, u). Hence (t, u) belongs to Pi, and con­
sequently Pi is euclidean.

(3) Serial property: the possibility conditions are constructive. Thus, for every state si of Ai,
for every j, j '#i, tj can be constructed directly from the possibility conditions and
independently of any k, k'#j, k'#i. This is because the possibility conditions impose con­
straints only on the messages between Ai and other agents, and on the beliefs of other
agents. There are no constraints on the messages between agents A j and Ak, if j '#i and
k ':l:i . Thus, for every state of s , 3r such that (s , t) e pi . Hence pi is serial.

The actual state may not be one of the possible states. Thus, the possibility relation is
not reflexive , and a believed WFF may not be true in the real world.

Given these properties of the possibility relations, an axiom schema must be chosen for
the modal logic of belief. Several axiom schemas are possible. An axiom schema not only pro­
vides a sound and complete formal system but also determines whether the satisfiability of
WFFs is decidable or not in the logic, and hence must be chosen carefully. The following
axiom schema is known to provide a sound and complete characterization of our notion of
belief, and a decidable satisfiability of WFFs [HaM85]. The axiom schema consists of the fol­
lowing axioms:

-!

for all i , i = 1, ... , m :
Al. All substitution instances of propositional tautologies.
A2. Bip A BJ.p => q) => Bi q.
A3. Bip => BiBiP (introspection of positive belief).
A4. -Bip => Bi -Bip (introspection of negative belief).
AS. -Bi (false) (agent i does not believe a contradiction).

and the following inference rules:

for all i, i = 1, ... , m :
Rl. From p and p => q infer q (modus ponens).
R2. From p infer Bip (generalization).

14

Some of these axioms directly correspond to the properties of the possibility relations P~o .. ·Pm:
A3 corresponds to transitivity, A4 to the euclidean property and AS to the serial property.

2.6. A Theory of Trust

The beliefs that an agent has may not be true in the real world. Trusts, encoded as proper
axioms, are used to derive the truth (or falsity) of beliefs. A trust is any proper axiom added to
the modal logic of belief presented in Section 2.3, i.e., any WFF that is assumed to be valid in
addition to the axioms in the logic. In the logic, we started with no assumptions about the secu­
rity behavior of agents. In the theory, we explicitly add the necessary assumptions in a pre­
cisely codified manner, and these assumptions are regarded as trusts. The simplest trusts are
implications of the form, BiF => F, where F is a WFF. Since any WFF can be regarded as a
trust specification, this approach gives a lot of power and generality to expressing trust relation­
ships [Ven88]. Security theories [Lan81], which are first-order, can be incorporated into our
theory of trust

As was observed in Section 2.2, adding proper axioms to a logic results in a theory. Let
us assume that we have a theory consisting of the modal logic of belief and some trusts (which
are the proper axioms). What are the effects of adding a new trust to an existing theory ? If the

theory is decidable 4 and the new trust can be proved as a theorem in the theory, there is no need
to add the new trust. If the new trust is not a theorem, adding it gives rise to a new theory. If

the new trust does not invalidate the old theory 5, the mono tonicity of the logic is retained and
the new theory will continue to be complete with respect to the old model. However, the new
theory is no longer sound with respect to the old semantic model (i.e., the semantic model
corresponding to the old theory). Thus, a new model has to be constructed so that the new
theory is sound and complete with respect to the new model. Proving soundness of the new
theory w.r.t. the new model is usually easy, but proving completeness is more often than not
cumbersome, non-intuitive, and difficult However, the possible worlds semantic model is
highly amenable to incremental modification such that the new theory is sound and complete
with respect to the modified model. The modification consists of adding new constraints to pos­
sibility relations p1, ... , Pm in the Kripke structure (this will be illustrated in the next section).
This is exactly the reason why the possible worlds model was chosen: it provides a powerful

4 A theory is decidable if, for any WFF in the theory, it can be determined whether the WFF is satisfiable or
not.

5 The following three statements are equivalent to each other: (1) a WFF does not invalidate a theory, (2) the
negation of a WFF cannot be proved as a theorem, (3) a WFF is satisfiable in the theory.

- I

15

and flexible framework for customizing a logic.

A trust specification can be thought of as an abstract representation of a policy in the dis­
tributed system. The next step is pragmatic: Given a trust policy, what are the protocols neces­
sary to ensure that the policy holds in the system ? The following section illustrates the method
for synthesizing protocols from a given abstract trust specification.

2.7. Synthesizing Protocols from Abstract Trust Specifications

Consider a distributed system in which there are three agents Ai, Ai and At. Let Q be any
WFF. Let ''VQ, BjBiBJcQ => BiBjBJcQ" be the given trust specification that is to be imple­

mented in the distributed system. Informally, this trust specification says that, for all well­
formed formulas Q, if Ai believes that A; believes that Ak believes Q, it is necessary that Ai

believes that A i believes that Ak believes Q . This particular trust specification may not
correspond to any particularly useful notion of trust in a real system. However, it serves as a

good example for illustrating how an abstract trust specification can be translated into concrete
distributed system protocols.

To see clearly the advantages of the formal theory of trust, let us first look at the solution
that an informal analysis might yield. For the trust to hold, A; has to believe BjBkQ before Ai

believes BiB 1c Q . Ai 's belief can be created by a message from A i containing BiB t Q . A i 's

belief can be created by a message from Ai containing BiB t Q . Thus, for the trust to hold, A i

sends a message containing BjBkQ to Ai before Ai sends a message containing B;BkQ to Ai.

Let us now see what the formal techniques yield. The outline of the formal method is as
follows: Given a WFF such as "BjBiBkQ => B;BjBkQ" as the trust specification, we semant­
ically interpret it. For this WFF, interpreting the beliefs in the antecedent and the consequent
yields possibility relations, which contain pairs of states. For the consequent to be true when­
ever the antecedent is true, the possibility relations of the consequent must be subsets of those
of the antecedent Possibility relations are nothing but sets of pairs of states, and hence we
obtain relationships between the set of states of the antecedent and the set of states of the conse­
quent. States are nothing but message histories, and thus we obtain relationships between mes­
sage histories of agents, which with some more manipulation are reduced to such conditions as,
for instance, that an agent must send/receive a particular message before or after
sending/receiving some other message, and so on.

The given trust specification is required to be true in all system states. Let the state of the
system be s, and the states of A;, Ai and At be s;, si and sk respectively (see Figure 2.3). If the
antecedent B1BiBkQ of the trust specification is not true ins, the trust specification "BjBiBkQ

=> BiBjBkQ" is trivially true ins. Suppose the antecedent is true in s. The antecedent is
created by a message received by A j such that the message sender field is A; and the message

contains B;BkQ. Thus, the message exchanges specified by condition Ms below must have
taken place in s :
Message Condition M5 : Ai receives B;B~cQ from A;.

Since s is the real state (as opposed to a possible state) of the system, we say:

State Condition Cs: s is the real system state.

The antecedent BiB i B k Q is a belief. Its semantic interpretation is that there is a possible state t
such that (s, t) e p j, and the message exchanges specified by condition M1 below must have

taken place in t :

Message Condition Mt: A; sends B;BkQ to A1.

16

Trust Spec.: For all Q, BjBiBkQ => BiBjBkQ

BJ'BiBkQ BiBJ'BkQ

(s,t) E P. lhs
(x,y) e p

}- i-rhs

BiBkQ BjBkQ

Q (t,u) E P.lhs (y,z) E
Q ,_

BkQ BkQ

Antecedent Consequent

Figure 2.3: The Kripke structure semantic interpretation of the trust BjB;B~cQ =>
B; B j B" Q . The local states of A; , A j, and A" in the various global states have been
derived using the possibility conditions PCl, PC2 and PC3. For example, in global state

t, the local state of A; is t;, the local state of A j is sj, and the local state of A" is t". States

s and x are real states. All other states are possible states.

Since t is a possible state, the possibility conditions PCl, PC2 and PC3 must be satisfied in t:

State Conditions Ct:

(a) tj = sj.

(b) There is an authenticated channel from A; to A j,

(c) A; sends a message B;B~cQ only if it believes BkQ, i.e., only if A; has received B~cQ

from A~.:. In other words, A; does not lie about its beliefs to Aj.

Now consider state t. By M1 and C1 , A; believes B" Q , i.e., B; B" Q is true. If we further inter­

pret B;B"Q, we obtain that in state t there is a possible state u such that (t, u) e p;. and the

message exchanges specified by condition M., must have taken place in u :

Message Condition Mu: A.t sends B~cQ to A;.

Since u is a possible state, the possibility conditions PCl, PC2 and PC3 must be satisfied in u :

State Conditions Cu:

(a) u" = t".
(b) There is an authenticated channel from A" to A;.

17

(c) A.t believes Q, i.e., A.t has not lied about its beliefs to Ai.

1bis concludes the interpretation of the antecedent Let us now interpret the consequent,

BiBiB.tQ. For BiBjBJcQ to be true in a real system state x, Ai must have received BiBJcQ

fromAi inx:

Message Condition Mx: Ai has receives BiB k Q from A i.

Since x is a real state of the system, we say:

State Condition Cx: x is the real state of the system.

The belief BiB i B k Q of the consequent is interpreted in exactly the same way as that of the

antecedent, and we obtain that there must be a possible state y such that (x, y) e pi, and the

message exchanges specified by My below must have taken place in y:

Message Condition M1: Ai sends BiBkQ to Ai.

Since y is a possible state, the possibility conditions must be satisfied in y :

State Conditions C1:

(a) Yi =xi.

(b) There is an authenticated channel from A i to Ai .

(c) Ai believes in B.tQ, i.e., Ai has received B.tQ from A.t. In other words, Ai has not

lied about its beliefs to Ai .

Interpreting BjBJcQ in y yields that there must be a possible state z such that (y, z) e Pi• and

the following message exchange must have taken place in z :

Message Condition Mz: A.t sends B k Q to A i.

Since z is a possible state, the possibility conditions must be satisfied in z :

State Conditions Cz:

(a) Z.t = Y.t·

(b) There is an authenticated channel from A.t to A i.

(c) A1c believes Q is true, i.e., A.t has not lied about its beliefs to A i.

This concludes the interpretation of the consequent.

Let Pi-Ills, Pi-Ills, and P.t-ills denote the possibility relations of Ai, Ai, and A.t, respectively, on

the antecedent side, and Pi-rlls, Pj-rlls, and P.t-rlls denote the possibility relations of A1, Aj, and

A.t, respectively, on the consequent side. The trust specification requires that the consequent be

true whenever the antecedent is true. Since the beliefs of the antecedent and consequent are

determined by their respective possibility relations 6, the possibility relations required for the

consequent must be subsets of the possibility relations required for the antecedent This yields

two constraints, Rl and R2:

Constraint Rl: Pi -rlls must be a subset of Pi-Ills. Pi-rlls contains (x, y), and Pi-Ills contains (t,

u). Thus, the set of pairs of states, { (x, y)} must be a subset of { (t, u)}. Thus set of states,

{x} must be a subset of {t}, and {y} must be a subset of {u} 7. If a set of states {rd is to be a

6 See Section 2.3.3.
7 Sets of states are used in place of single states because, the various state and message conditions do not

uniquely specify the states, rather they define sets of states.

-,

18

subset of a set of states {r2}, the state conditions of r 1 must be satisfied in r 2 and the message

exchange conditions of r 1 must be satisfied prior to the message exchange conditions of r 2 (i.e.,

the message history of r 1 must be a subset of the message history of ri). Thus "{x} must be a

subset of { t } " yields:

Rl.l: Cx must be satisfied in C1 • Thus, in the system's real state, Ai must have an authen­

ticated channel to A j, and Ai must send BiB k Q to A j only after receiving a message con­

taining B.tQ from Ak.

R1.2: Mx must be satisfied prior to M1 • Thus, A; must receive BjBkQ from Aj before

sending BiBkQ to Aj.

Since we are only interested in constraints that affect real system states (rather than possible

states), and since both y and u are possible states, we will not elaborate on the result that {y}

must be a subset of { u } .

Constraint R2: Pj-rh.r must be a subset ofpj-lh.r· Thus, {(y, z)} must be a subset of {(s, t)}.

Therefore, {y } must be a subset of { s } , and { z } must be a subset of { t } . "{y } must be a subset

of {s } " yields:

R2.1: Cy must be satisfied in Cs. In Aj 's real state, Aj must have an authenticated chan­

nel to Ai, and Aj must send BjBkQ toAi only after receiving a message BkQ from Ak.

R2.2: My must be satisfied prior to Ms. Thus, Aj must send BjBkQ to Ai before receiv­

ingBiB.tQ fromAi.

Notice that from Rl we have "{y } must be a subset of { u} ", and from R2 we have "{y } must

be a subset of {s} ". Thus, the state conditions of u and s must be identical:

R2.3: u must be a real state, and hence, in Ak 's real state, Ak must have an authentic mes­

sage channel to Ai, and Ak must send Q to Ai only if it believes Q.

R2 also yields that {z} must be a subset of {t }. Thus:

R2.4: Cz must be satisfied in C1 • In the system's real state, by R 1.1, C, is satisfied, and

hence Cz must be satisfied. Hence in the system's real state, Ak must have an authentic

message channel to Aj, and A.t must send BkQ to Aj only if it believes Q.

R2.5: Mz must be satisfied prior to M,. But M, may become satisfied at any instant after

M,. Hence, Mz must be satisfied prior toM,. Thus, Ak must send BkQ to Aj before

sending it to Ai.

This concludes the derivation of the constraints that are necessary and sufficient for BjBiBkQ

=> BiBjBkQ to hold in the distributed system. Notice that the constraints we have derived are

in fact the protocols that agents Ai, A j and Ak must follow if the trust is to be satisfied in the

system. Since in this procedure we map a trust to its semantic interpretation, we obtain the pro­

tocols that are necessary and sufficient for the trust to hold. Any WFF can be mapped to its

semantic interpretation, and hence semantic interpretation can be carried out for any trust result­

ing in the protocols necessary and sufficient for the trust to hold. Since we have not made any

particular assumptions with respect to the nature of the system, its models, or the trusts, this

methodology of obtaining protocols necessary and sufficient for a given trust to hold is general

in its applicability to trusts, systems, and their models. Even for such a simple trust

specification which involves just three agents, the constraints that we obtained earlier using a

casual interpretation form a small subset of those we have obtained using a formal interpreta­

tion. Thus, formalism is essential, and mere intuition is not dependable.

-;

19

It can be shown that, if any of the constraints Rl.l, R1.2, R2.1, R2.2, R2.3, R2.4 and R2.5

are not satisfied, this may result in a violation of the trust. Let us illustrate this by an example.

Suppose part of constraint R2.1, namely,

"Ai sendsBiBkQ toAi onlyafterreceivingamessagecontainingBiQ fromA~c".

is not satisfied in a system. The trust specification ''V Q, BjBiB~cQ => BiBjBkQ" is falsified

at the end of the following sequence of steps (see Figure 2.4):

Step 1 (Figure 2.4(a)): B~c Q is true. Ai sends "BiB" -Q" to Ai, and this creates a belief
"B·B·B -Q" inA·

I J /c I"

'

'

~ 0
BkQ BiBjBk-Q

BiBkQ

BjBkQG
A· J

BkQ

w ~
... --.. ---............... -.. -----.................................... -- -.. -- --- --- -- -............ ------.............................. -----.. .

0
BiBjBk-Q

BiBkQ

BjBkQ
A-J

~
BkQ

(c)

BiBjBk-Q
BiBkQ

BjBkQ

GBjBiBkQ

~
BkQ

(d)

Figure 2.4: A scenario which shows that the trust can be falsified if constraint R2.1 is not

satisfied. (a) The sending of BiB" -Q by Ai to Ai creates a belief BiBjBk -Q in Ai. (b)

ThesendingofB~cQ by A" toAi andAi createsbeliefsBiBkQ andBjBkQ. (c)Thesend­

ing of BjBkQ by Ai to Ai is rejected by Ai as it is inconsistent with the message Ai re­

ceived from Ai in (a). (d) The sending of BiBkQ by Ai to Aj creates a belief BjBiBkQ.

Since BiB j B" Q is not true, the trust is falsified at this juncture.

20

Step 2 (Figure 2.4(b)): A.t sends its belief "B.~:Q" first to Aj and then to Ai. At this point, both
Aj and Ai have belief "B.~:Q ".

Step 3 (Figure 2.4(c)): Aj sends "BjB.tQ" to Ai. Since Ai has earlier received "BjB.t -Q" from
Aj in step 1, and since "B.~:Q" is inconsistent with "B.t -Q ", Ai rejects the message from Aj con­
taining "BjB.tQ ". Notice that the trust BjBiB.tQ => BiBjBkQ is not violated. This is because
the trust is violated only when the antecedent of the trust BjBiB.tQ is true but the consequent
BiBjBkQ is not true. However, at the end of this step the antecedent is not true.

Step 4 (Figure 2.4(d)): Ai sends its belief "BiB.tQ" to Aj. This creates a belief "BjBiBkQ" in
A j . Thus the antecedent of the trust V Q , B j BiB .t Q => BiB j B .t Q is true. But the consequent
BiBjB.tQ is not true (recall that BiBjB.t -Q is true at the end of step 1), and hence the trust
"BjBiBkQ => BiBjBkQ" becomes false.

2.8. Conclusion

We have developed an axiomatic theory of trust in distributed systems. The theory of
trust is based on modal logics of belief. Any well fonned fonnula assumed to be valid in addi­
tion to the axioms of the logic is considered as a trust specification. This gives us much power
and generality in expressing trust relationships. We have given a fonnal method for synthesiz­
ing protocols which are necessary and sufficient for implementing a given trust specification in
a distributed system. In comparison, even for some simple trust specifications, infonnal
methods do not yield all the required protocols. In Kripke's theory, any well formed formula
can be given a semantic interpretation, and since our method of synthesizing protocols that are
necessary and sufficient for a trust to hold is based on giving a semantic interpretation to the
trust, our method is general in its applicability to trusts, systems, and their models.

CHAPTER 3

ANALYSIS

Trust arises primarily in establishing channels for secure communication. This chapter
analyzes the trust properties of various channel establishment mechanisms. We define a chan­
nel precisely and show that the only way to establish a new channel is by composing a sequence
of existing adjacent channels. Channel composition mechanisms are commonly based on either
public key encryption (PKE) or single key encryption (SKE). We present methods for reason­
ing about the trust characteristics of PKE- and SKE-based channel composition mechanisms.
PKE-based channel composition requires 3-agent trust predicates called authenticity trusts. The
trust requirements of SKE-based channel composition are much more extensive than those of
PKE-based channel composition. The differences in trust properties of PKE and SKE-based
channel compositions are used to compare these two methods, and derive several advantageous
properties of the fonner over the latter.

3.1. Introduction

It was observed in Chapter 1 that in any system, given a set of existing channels, the only
way to establish new channels is by composing a sequence of adjacent existing channels.
Channel composition mechanisms may require the satisfaction of some trust relationships.
Having given a precise meaning to the notion of trust in the previous chapter, we analyze the
trusts inherent in various channel composition mechanisms in this chapter. The next chapter
discusses the synthesis of distributed systems so as to satisfy a given set of trust relationships.
The analyses presented in this chapter must precede the design methodology of the next chapter
because, to be able to make use of a mechanism in a distributed system that is designed to
satisfy a given set of trusts, one has to know the trust properties of the mechanism. These ana­
lyses provide insight into the basic structure and the limitations of mechanisms with regard to
their trust requirements.

In Section 3.2 we define a channel precisely, and prove that the only way to establish new
channels is by composing existing channels. In order to analyze trusts fonnally in various chan­
nel composition mechanisms, the fundamental actions in the mechanisms must be encoded in
the language of the logic of trust Section 3.3 introduces the atomic propositions that encode
these fundamental actions. Channels are based on encryption, and there are two commonly
used encryption techniques, namely, public key encryption (PKE) and single key encryption
(SKE). Sections 3.4-3.7 analyze the trust relationships required in PKE- and SKE-based chan­
nel composition mechanisms, with Sections 3.4 and 3.5 considering the composition of two
channels, and Sections 3.6 and 3.7 considering the composition of more than two channels.
Making use of the results of these fonnal analyses, Section 3.8 discusses the advantages of
PKE-based mechanisms over SKE-based mechanisms for channel composition. Finally, Sec­
tion 3.9 concludes the chapter.

3.2. Channels

In order to analyze trusts in channel composition mechanisms, we first have to define a
channel precisely.

21

22

3.2.1. Definition of Channel

A channel (Ai, A.t) is said to exist between two agents Ai and Ak if and only if the follow­

ing two conditions are satisfied (see Figure 3.1):

(1) Authenticity Condition: Ai can authenticate messages coming from A.t, i.e., A; can

detennine whether a message it received has been really sent by A.t, and

(2) Privacy Condition: A; can send a secret message to A.t, A; knows the identities of agents

other than A.t that can decrypt the secret message (because these agents might possess the

key with which the secret message is encrypted), and the decryption of the secret message

by those agents is acceptable to Ai.

Algorithms for ensuring both these conditions are executed at Ai using infonnation such as

encryption keys associated with A.t. The privacy condition is motivated by the observation that

agents other than A; and AA: may have been involved in establishing channel(Ai, A,t). in which

case those agents may possess the channel encryption key and hence have the capability to

decrypt secret messages on the channel. The privacy condition requires that Ai precisely know

the identities of those agents. As we shall see in later sections, the agents that may possess the

channel encryption key are those that are in the path between A; and A.t in the system's name

space, and with each such agent, Ai has to have a trust relationship that guarantees that the

agent will not compromise the security of channel(A;, A.t). In Chapter 4, we shall see how Ai

can control the set of such agents. Notice that channel(Ai, A.t) involves messages in either

direction and does not imply that messages can only flow from Ai to A.t. Channel(A;, A.t) and

channel(AA:, Ai) together fonn a bidirectional channel between A; and A.t.

3.2.2. Channel Establishment

We now show that in any system, given a set of existing channels, the only way to estab­

lish a new channel is by composing a sequence of adjacent existing channels. Even though this

result seems very intuitive, it is a very powerful result As we shall see in Sections 3.4-3.7, this

result greatly simplifies the analysis of trust properties of channel establishment mechanisms.

A channel established by composing other channels is called a dependent channel. On the

Authenticity 1 1

I A ! I -----<f-- I ~ k I

~ .. /
\,~ _________________

--·-~-~--

Privacy

23

other hand, an independent channel does not use any other channels for its establishment. The
system provides independent channels at the time of system configuration. Independent chan­
nels are established using mechanisms external to the system, such as courier-exchanges
between agents.

Theorem 3.1 (Channel Composition Theorem): Suppose that, in a system consisting of
agents Ai, A/. A/, ..• , Aj, Akt the only existing channels are channel(Ai, A/). channel(A/. A/) •
... , channel(Aj, AA;), which form a path between Ai and At. Any mechanism that establishes
channel(Ai, At) necessarily involves messages on all the existing channels, and the mechanism
must necessarily consist of a succession of compositions of two adjacent channels.

Proof: The proof is by induction on the number of agents A/, A/, ... , A j in the path between Ai
and At.

Base Case: Suppose n = 0. The result is trivially true.

Induction Step: Assuming that the theorem holds for n < m, we show that it holds for n = m.
Let the sequence of channels form the only path between Ai and A A: (see Figure 3.2). The estab­
lishment of channel(Ai, At) requires that A A:' s encryption key be received by Ai. Since Ai can
receive messa~es only on its existing channels, and since its only existing channel is
channel(Ai, Ai), for channel(Ai, AA:) to be established, Ai must receive AA: 's key in a message
from A/ on channel(Ai, A/). Thus, a message on channel(Ai, A/) is necessary, and A/ must
have possessed AA: 's key prior to sending it to Ai. But A/ possessing AA: 's key implies that
channel(A/, AA:) exists. Consequently, channel(A/, AA:) must have been established prior to
A/'s sending of At's key to Ai. Hence, channel(Ai, AA:) was composed from two adjacent
channels, channel(Ai, A/) and channel(A/. AA:), and the composition involved a message on
channel(Ai, A/). However, from the induction hypothesis, channel(A/. AA:) involved messages

1
A.

J

•
A.

1

• •

A 's encryption key
k

• m-1
A.

J

Figure 3.2: The Channel Composition Theorem

m
A.

J

• A
k

24

on all the channels in the path between A/ and Ato and hence channel(A/, A,t) was the result of
a succession of adjacent two-channel compositions between A/ and A.t. Thus, any mechanism
that establishes channel(Ai , A.t) must necessarily involve messages on all the existing channels,
and must necessarily consist of a succession of adjacent two-channel compositions. This com­
pletes the proof of the Channel Composition Theorem.

0

Channel establishment, which is a sequence of adjacent channel compositions, requires
trust relationships. The trust relationships required are such that, when they hold in the system,
the authenticity and privacy conditions of the newly established channel are satisfied, and, when
they do not hold, these conditions are not satisfied.

In the next few sections, we analyze the trust requirements of various channel composition
mechanisms. The trust requirements depend on the algorithms used for ensuring the two chan­
nel conditions. We will consider the two commonly used kinds of these algorithms, namely,
public key encryption algorithms (PKE) [DiH76,RSA78] and single key encryption algorithms
(SKE) ~'BS77].

In order to do a fonnal analysis of the various mechanisms, we have to encode the funda­
mental actions of the mechanisms into the language of the logic of trust. This is accomplished
in the next section.

3.3. Atomic Propositions

Fundamental actions at a given level of abstraction are encoded in the language of the
logic of trust by atomic propositions. Atomic propositions are so called because they are the
most basic well formed formulas in the language of the logic, and an atomic proposition cannot
be described in terms of any other atomic propositions. Thus, the set of atomic propositions is
not unique to a system, but depends on the level of abstraction at which we are analyzing the
system. For our analysis of trust relationships in PKE- and SKE-based channel composition
mechanisms, the fundamental actions are key-generation, message-sending and message­
reception. These are abstracted by the following atomic propositions:

(1) owner(keyv At) (Ownership Proposition): PKE and SKE algorithms make use of
encryption keys belonging to agents. Let a key denote an encryption key from a finite key
space KEY. An ownership proposition encodes the generation of a key. Owner(key x' At)
returns true if and only if agent Ai generated the encryption key keyx. Given a notion of
feasible computation, it is assumed that an agent can generate keys (perhaps using random
number generators) that cannot be generated using a feasible computation by any other
agent [Den82]. Note that the generator of the key is always its owner. Thus, if a key
server generates a key and hands it over to an agent, the key server retains the ownership
of the key. In Section 3.4, we shall describe using beliefs the relationship between an
agent and a key that the agent receives from a key server.

(2) send(A1, msgx): This atomic proposition abstracts the sending of a message msgx by an
agent Ai. Suppose msgx can be derived using a feasible computation from another mes­
sage msgy. From the viewpoint of security, sending msgy on a channel has also the effect
of sending msgx on the channel. Thus send(A1, msgx) returns true if and only if Ai sends
a message msgy such that at the time of sending, Ai can derive msgx from msgy using a
feasible computation. Msgx can be identical to msgy. Notice that a second agent Ai may
be able to derive msgz from msgy; if Ai cannot derive msgz from msgy, then the

25

proposition is not true. In practice, msgx is a message that can be obtained by decrypting
msgy using a key that A; possesses.

(3) receive(At, msgx): This atomic proposition abstracts the receiving of a message msgx by
an agent A;. Suppose msgx can be derived from another message msgy using a feasible
computation. From the viewpoint of security, receiving msgy on a channel has also the
effect of receiving msgx on the channel. Thus receive(A1, msgJ returns true if and only if
A; receives a message msgy such that, at the time of receiving, A; can derive msgx from
msgy using a feasible computation.

We are now fully equipped to proceed with the analysis of trust relationships in channel
composition mechanisms. For ease of understanding, the analysis considers the following cases
separately (in the order of increasing complexity):

(1) Composition of two independent channels using PKE,

(2) Composition of two independent channels using SKE,

(3) Composition of two dependent channels using PKE or SKE, and

(4) Composition of more than two independent/dependent channels using PKE or SKE.

In the sequel, the composition of two independent channels will be termed independent
channel composition and that of two dependent channels will be tenned dependent channel

composition.

3.4. Composition of Two PKE-based Independent Channels

Suppose channel(A;. A~c) is to be obtained from channel(A;. Ai) and channel(Ai, A~c). In
the PKE scheme [DiH76,RSA78], each agent has a two keys, namely, a public key and a
private key that form a pair. A message sent encrypted with a public key can only be received
by decrypting it with the corresponding private key, and vice versa. To compose channel(A;,
A~c) from channel(A;, Ai) and channel(Aj, A~c). A~c selects a (public key, private key) pair and
sends the public key to Aj on channel(Aj, A~c) (see Figure 3.3). In practice, Ai may be a name
server that stores A~c 's public key. When A; sends a request for A~c 's public key to Ai, Ai for­
wards A~c 's public key to A; on channel(A;, A i). For channel(A;, A~c) to be established, it is
necessary and sufficient for A; to know A~c 's public key.

3.4.1. Trusts in PKE-based Channel Composition

Let us look at the PKE-based channel composition mechanism more fonnally. When A"
selects a public-key private-key pair (keyfub, keyri~. it adds a belief "B~cowner(keyfub, A~c)".
Since the public key uniquely detennines the private key, a second belief claiming ownership of
the private key is redundant. Note that it is not necessary for A~c to be the owner of the key pair,
it suffices if A~c believes to be the owner. Thus, an agent that does not have the ability to gen­
erate keys can obtain a key pair from some other agent and at its risk, use that key pair as its
own.

A" then sends its belief, B~cowner(keyfub, A~c) to Aj, and this creates a belief,
BjB~cowner(keyfub, A~c) in Ai. When Aj receives a request for A~c 's public key from A;, A1
replies with its belief, BjB~cowner(keyfUb, A~c). This reply from Aj to A; creates a belief,
B;B1 B~cowner(key~. A~c) inA;.

However, the belief B;BjB~cowner(keyfub A~c) is not sufficient for channel(A;, A~c) to be
established at A;. For channel(A;, A~c) to be established at A;, A; must prove that Ak believes
keyfub to be its public key, i.e., A; must prove that B~cowner(keyfub, A~c) is true. A; is not

msg ..
jl

~-- A
L!J--- k

Figure 3.3: PKE-based channel composition mechanism

26

required to prove owner(key~. Ak) because it is pennissible for Ai to obtain a key pair from a

key server and to use the key pair as its own. In such a case the key server retains the owner­
ship of the key pair, whereasAi adds a belief Bkowner(keyfub, Ak). The required trust relation­

ship must be such that Ai can infer Bkowner(keyfub, Ak) from its belief BiBjBkowner(keyfub,

Ak). Rewriting this requirement as a fonnula, we obtain the following trust for PKE-based

channel composition:

TA(At, AJ, Ak) (Authenticity Trust): V keyfub in the public-key space PKEY,

BiBjBkowner(keyfub, Ak) => Bkowner(keyfub, Ak).

The trust is called authenticity trust because its validity requires Ai to forward correctly to

Ai the public key that Aj received from Ak. In other words, Aj has to forward authentic infor­

mation about Ak to Ai.

Interpreting TA (Ai, Aj, Ak) as "Ai trusts A j for Ak" gives a connotation that Ai is inevit­

ably the only loser if TA (Ai, Aj, Ak) is not true. We will now show that falsity of TA (Ai, Aj,

Ak) may be disadvantageous to either Ai or Ato and hence TA (Ai, Aj, Ak) should be interpreted

as an agreement involving Ai, A j and Ak in which A j has agreed to correctly forward Ak 's key

toAi.

If we use a client-server model of a distributed system, there are two cases of interest with

respect to the interaction between Ai and Ak (see Figure 3.4):

(1) Ai is a client and Ak is a server. As an example, let Ak be a time server. Suppose Ai

sends a time-of-day request to Ak, and Ai receives a reply purporting to be from Ak. Fal­

sity of TA (A;, Aj, Ak) can result in A; accepting a reply from another agent Am which in

collusion with A j is masquerading as Ak. Thus, Ai accepts an incorrect time-of-day reply,

and Ai is the loser for the falsity of TA (Ai, Aj, Ak).

27

(2) Ai is a server and Ak is a client. As an example, let Ai be a file server. Falsity of
TA (A;, Ai• AA:) can result in an agent Am colluding with Ai to masquerade as Ak in send­
ing a file-write request to the file server Ai. Ai accepts an incorrect write to Ak 's file, and
thus Ak is the loser for the falsity of TA (Ai, A i, Ak). (Ai might be a loser too if it has to
pay damages.)

In summary, falsity of TA (Ai, Ai, Ak) can be disadvantageous to either Ai or Ak or both, and
hence TA (Ai, Ai, A,~:) should be interpreted as an accord involving Ai, Ai and Akt in which Ai
has agreed to forward correctly Ak 's key to Ai.

3.4.2. Necessity and Sufficiency of Authenticity Trust

Trust requirements depend on the channel composition mechanism under consideration.
A set of trust relationships is sufficient w.r.t. a channel composition mechanism if, by using the
trusts as assumptions, the two channel conditions presented in Section 3.2 can be shown to be
satisfied for the newly composed channel. A set of trusts is necessary w.r.t. a channel composi­
tion mechanism if, for each assignment to the variables in the trusts that makes at least one of
the trusts false, the same assignment also makes at least one of the two channel conditions not
satisfied. If a set of trusts is necessary and sufficient w.r.t. a channel composition mechanism,
the trusts in the set exactly encode the assumptions inherent in the channel composition
mechanism. The following theorem proves that the authenticity trust is necessary and sufficient
in PKE-based channel composition mechanism.

Theorem 3.2: The authenticity trust is necessary and sufficient w.r.t. PKE-based channel com­
position mechanism.

Name server Name server

msg-1
@

Time server

@
Client Client File server

(a) (b)

Figure 3.4: Interpreting authenticity trust: illustration of how either A; or Ak may lose ow­
ing to falsity of TA (A;. Ai, Ak). Am in collaboration withAi, masquerades asAk to A; (a)
msg-1 is a time request, msg-2 is a time reply from Am msg-3 is a request for Ak 's pub­
lic key, and msg-4 is a reply containing Am's public key. (b) msg-1 is a write-request to
Ak 's file, msg-2 is a request for Ak 's public key, and msg-3 is a reply containing Am's
public key.

28

Proof: Suppose channel(Ai, Ai) and channel(Ai, A~c) are composed to fonn channel(A;, A~c)

using the PKE-based channel composition mechanism. We first show that the authenticity trust

is sufficient, and then show that it is necessary.

The proof that authenticity trust is sufficient is straight-forward. For channel(Ai, A~e) to

have been established, Ai must have received keyfwb on its existing channel(Ai, Ai), hence

BiBjBkowner(keyfwb, A~c). is true. By the authenticity trust, B~eowner(keyfwb, A~c) must be true.

Thus, A1e alone uses key{'v and the properties of public key encryption ensure the satisfaction of

both the channel conditions. Thus, the authenticity trust is sufficient for channel(Ai, A~c) to be

established.

Let "V", "A", and .. _, denote inclusive OR, AND, and complementation respectively.

To show that the authenticity trust is necessary, notice that this trust can be written as:

B~eowner(keyfllh, A~c) V -BiBjB~eowner(keyfwb, A~c). (3.1)

The negation offonnula (3.1) is:

-B~cowner(keyfub, A~c) A BiBjBkowner(keyr'. A~c). (3.2)

The only variable in the above fonnula is keyfllh. Su£pose that, for some assignment to keyfllh,

fonnula (3.2) is satisfied, i.e., both -s~eowner(keyf , A~e) and BiBjB~eowner(keyfllh, A~e) are

true. Since BiBjB~eowner(keyfllh, A~e) is true, Ai has received keyfub during the creation by

composition of channel(Ai, A~c). and hence Ai uses keyfub as the key of channel(Ai, A~e). Thus,

when Ai receives a message purporting to be from A1e, A; uses keyfub for authenticating the

received message. If the received message has been enc~ted with keyfriv, A1 detennines th~t

the message sender is A~e. However, since -B~eowner(keyf , A~e) is true, A~e does not use keyr'v

to encrypt messages, and hence the message was not sent by A~e. Thus, the authenticity condi­

tion of channel(Ai, A~c) becomes false. Thus, if any assignment to the only variable in the

authenticity trust makes the trust false, the same assignment can make the authenticity condition

of channel(Ai, A~e) false. This completes the proof that authenticity trust is necessary w.r.t the

PKE-based channel composition mechanism.
0

There is another method by which we can show that the authenticity trust exactly encodes

the assumptions inherent in PKE-based channel composition mechanism, and that is by viewing

the trust as a well-fonned fonnula in the logic of belief and carrying out its fonnal semantic

interpretation. Techniques developed in Section 2.7 are used to carry out the fonnal semantic

interpretation. The following section illustrates the method.

3.4.3. Semantic Interpretation of the Authenticity Trust

Let the state of the system be s . Consider the antecedent of the authenticity trust,

BiBjBJcowner(keyfub, A~e). The semantic interpretation of this belief is that there is a possible

state t such that (s, t) E Pi 1, and the following conditions are satisfied in t (see Figure 3.5):

(Al): The state of Ai is the same as that ins,

1 Pi is Ai 's possibility relation. The method of semantically interpreting a belief was described in Section 2.7.

(A2): there is an authenticated channel from Ai to Ai,

(A3): Ai has sentBiBkowner(keyr. A.t) to Ai, and

29

(A4): BjB.towner(keyfub, Ak) is true, i.e., Ai has received "B~eowner(keyfub, A~e)'' from

Ale.

Now consider state t. By condition A4, BjB~eowner(keyfub, Ak) is true in t, and interpreting

this belief yields that there is a possible state u such that (t, u) E Pi, and the following condi­

tions are satisfied in u :

(AS): The state of Ai is same as that in t, hence conditions A2, A3 and A4 are satisfied in

U,

(A6): there is an authenticated channel from Ak to A1 ,

(A 7): A1e has sent B k owner(keyfub, A.t) to A i, and

(AS): B.towner(keyfub, A.t) is true.

Now consider the consequent of the authenticity trust, B ~eowner(keyfub, A,t). The trust requires

that in any state in which the antecedent is true, the consequent also be true. Since the

antecedent is true in state s , we need also the consequent to be true in state s . Comparing con­

dition A8 and the consequent, we obtain that the consequent is true in u . Thus, for the conse­

quent to be true ins, it must be the case that s = u. However, in u, conditions A5, A6, A7 and

AS are satisfied. Thus, in the real states, conditions A5, A6, A7 and AS must be satisfied. But

A5 requires that A2, A3 and A4 be satisfied. Thus, in real state s, A2, A3, A4, A6, A 7 and A8

must be satisfied. Notice that these conditions are exactly the assumptions on which the PKE­
based channel composition mechanism is founded:

pub
B. B. B ,,owner(key , A)

I J "' X k

msgkj

pub
Bkowner(key, A)

X k

Figure 3.5: Semantic interpretation of authenticity trust

A2: Existence of channel(Ai, Aj),

A3 and A4: Ai correctly forwardsAk 's key,

A6: Existence of channel(Ai, Ak), and

A 7 and A8: Ak selects a public-key private-key pair and sends the public key to A j.

30

This concludes the verification that the authenticity trust exactly encodes the assumptions

inherent in the PKE-based channel composition mechanism, and hence the authenticity trust is

necessary and sufficient w.r.t. the PKE-based channel composition mechanism.

3.5. Composition of Two SKE-based Independent Channels

Suppose that channel(Ai, Ak) is to be composed from channel(Ai, Ai) and channel(Aj,

Ak). In the SKE scheme [NBS77], there is one key belonging to each agent, and the key is

referred to as the agent's single key. A message sent encrypted with a single key can only be

received by decrypting it with the very same single key, and vice versa. To obtain channel(Ai,

Ak) from the composition of channel(Ai, Ai) and channel(Aj, Ak), Ak selects a single key and

sends the single key to Ai in a message msgkj on channel(Ai, Ak) (see Figure 3.6). When Ai

sends a request for Ak 's key to Aj, Aj forwards Ak 's single key to Ai in a message msgji on

channel(Ai, A i). It is necessary for Ai to know Ak 's single key for channel(Ai, Ak) to be esta­

blished. Thus, the authenticity trust is necessary as in the PKE scheme.

There is a major difference between the PKE and SKE schemes with regard to trust

requirements. In the PKE scheme, an agent such as Ai, even though it has obtained Ak 's public

key during channel composition, cannot masquerade as Ak or decrypt secret messages on

channel(Ai, Ak). But in the SKE scheme, knowing Ak 's single key enables A i to masquerade as

~~--\, G) /
/

i

msg ;\; / i

&:
~---··----·--·--·--·-··············· A
L:...:!J······················-------·--··- k

/.----------~-~~

Figure 3.6: SKE-based channel composition mechanism

31

A~c and to decrypt secret messages by eavesdropping on channel(Ai, A~c).2 Thus, authenticity

and privacy conditions of channel(Ai, A~c) are not satisfied. Hence, the authenticity trust is not

sufficient w.r.t. the SKE-based channel composition mechanism.

To determine the remaining trust requirements of the SKE scheme, notice that the

definition of channel(Ai, A~c) requires Ai to know the set of agents other than Ai and A~c that can
receive secret messages sent on channel(Ai, A1c). The set of agents that can decrypt secret mes­

sages on channel(Ai, A~c) are those that have obtained Ak 's single key. During the channel
establishment process, an agent may have obtained A~c 's single key either when the key

traversed the path from A~c to Ai in message msgkj or when the key traversed the path from Ai

to Ai in message msgii.

Consider an agent Am 1 that may have obtained the key by receiving msgkj 3• Notice that,

by definition, channel(A~c, A i) allows A~c to send a secret message to A i so that A~c knows the
identity of agents who can decrypt the secret message. Thus the identity of agent Am 1 is known

to A~c if A~c sends msgki as a secret message on channel(A~c, A i).

Now consider an agent Am2 that may have obtained the key by receiving msgji. By

definition, channel(Aj, Ai) allows Ai to send a secret message to Ai so that Ai knows the iden­
tity of agents who can decrypt the secret message. Thus, the identity of agent Am 2 is known to

Ai if Ai sends msgji as a secret message on channel(Aj, A;).

To ensure that Ai knows the identity of Am 1 and Am2, the following mechanism can be

used: A~c sends the string "Ami• B~cowner(key", A~c)'' to Ai in a secret message msgkj on
channel(A~c, A i). When A i receives msgki, it decrypts msgkj using the key of channel(A~c, A i)

and authenticates msg"i using the key of channel(Ai, A~c) 4
• At this juncture, A1 knows the

identities of both Am 1 and Am2· A1 sends the string "Am 1• Am2• BJBkowner(keyx, A ~c)'' to A; in
a secret message msg1; on channel(A J, Ai). When Ai receives msgii, it decrypts msgkj using the
key of channel(Aj, Ai) and authenticates msg"i using the key of channel(Ai, A J).

The assumptions in the above mechanism are formally captured in the following trust
definition:

T F(A1, AJ, Ak) (Forwarding Trust): V keyx, Am 1• Am2•

B;BjBJcowner(keyx, A~c) => (((send(Aj, keyx) A receive(Am 2, keyx)) => BiBjreceive(Am2,

keyx)) A ((send(A~co keyx) A receive(Aml• keyx)) => BJBkreceive(Amt• keyx)) A
(BjBJcreceive(Aml• keyx) => BiBjB~creceive(Am~o ke)'x)))·

The antecedent in the above definition of forwarding trust encodes that Ai has received A" 's key

through A}.

The first term of the consequent, "(send(Aj, keyx) A receive(Am 2, keyx)) =>
BiB1receive(Am 2, keyx)" encodes that, if Am2 is able to obtain A~c 's key by decrypting msgJi, A1
informs Ai of Am 2's identity.

The first factor in the second term of the consequent, "(send(A~c. keyx) A receive(Amt•

keyx)) => B1 B~creceive(Aml• keyx)'' encodes that, if Aml is able to obtain Ak 's key by

2 Notice that, even if channel(A;, Ai) does not physically go through A i, A i can still decrypt secret messages by

eavesdropping on the channel.
3 The set of agents {A,. 1} may be empty, but that is only a special case.

4 Notice that channel(Ab A i) is necessary for Ai to send a secret message to A i, whereas channel(A i, A1) is

necessary for A i to authenticate a message sent by Ai .

32

decrypting msgki• Ak infonns Ai of Am 1's identity. The second factor, "BiBkreceive(Aml•

key")=> BiBiBkreceive(Aml• keyx)'' encodes that Ai correctly fmwards the identity of Am 1 to

Ai.

To recapitulate, the forwarding trust allows Ai to detennine the identities of all agents Am

that may have obtained key" by decrypting msgki or msgii. Three more assumptions are neces­
sary for the conditions of channel(Ai, Ak) to be satisfied. Firstly, Am must not reveal key" to

any other agentA1• This assumption is captured by the Key Privacy Trust below. Secondly, for
the authenticity condition of channel(Ai , Ak) to be satisfied, Am must not use key x to

masquerade on channel(Ai, Ak)· This assumption is captured by the Trust against Masquerad­
ing defined below. Lastly, for the privacy condition of channel(Ai, Ak) to be satisfied, Am must
not decrypt and reveal a secret message sent on channel(Ai, Ak). This final assumption is cap­
tured by the Message Privacy Trust defined below.

TIQJ(A., Am, AJ (Key Privacy Trust):V key", BiBkowner(keyx, Ak) => -send(Am, keyx).

T AMasq(A1, Am, Ak) (Trust against Masquerading): V msgx, (receive(Ai, msg") A B i send(Ak,
msgx)) => -send(Am, msgx).

T MP(A., Am, A0 (Message Privacy Trust): V msg", (send(Ai, msgx) A B i receive(Ak, msgx) A
receive(Am, msgx)) => -send(Am, msgx).

These three trusts are required of any agent that possesses Ak 's key. The three trusts together
fonn the Key User-Possessor Trust, denoted by T KUP·

The following theorem summarizes all the above results about SKE-based channel com­
position.

Theorem 3.3: Suppose that in a system there are agents Ai and Ak, and channel(Ai, Ak) is to be
established using SKE-based composition. There must exist an agent Ai such that there are
four channels, channel(Ai, Ai), channel(Ai, Ai), channel(Ai, Ak) and channel(Ato Ai). The
authenticity trust, the forwarding trust and the key user-possessor trust are necessary and
sufficient w.r.t. SKE-based channel composition.

Proof: By the Channel Composition Theorem, there must exist an agent Ai such that there are
channels (Ai , A i) and (A i, Ak). By the definition of forwarding trust, the forwarding trust
requires privacy of messages from Ak to Ai, and from Ai to Ai. Thus, channel(Ak, Ai) and
channel(A i , Ai) are required for forwarding trust. We show below that the forwarding trust is
necessary, and hence channel(Ak, A i) and channel(A i, Ai) are necessary.

We first show that the authenticity trust, the forwarding trust and the key user-possessor
trust are sufficient, and then that they are necessary.

In SKE-based composition of channel(Ai, Ak) from channels (Ai, Ai) and (Ai, Ak), when
Ai uses key" for channel(Ai, Ak), it must have received key:r. on its existing channel with A1,

and hence BiBiBkowner(key:r., Ak) is true. Applying the authenticity trust, Bkowner(key:r., Ak)

is true. Thus, Ak uses key:r. to send messages to Ai and to receive secret messages from Ai. We
have to show that no other agent possessing key" compromises the two conditions of
channel(Ai, Ak).

Consider a fourth agent that possesses key:r.. The agent must have obtained keyx either (1)

directly from Ai or Ato or (2) indirectly from Ai or Ato i.e., through a sequence of agents, start­
ing with some agent that received directly from Ai or Ak. Since the forwarding trust T F (Ai, A 1,

Ak) is true, Ai knows the identities of all agents A171 that have obtained key:r. directly from A1 or
Ak. Since the key privacy trust T KP (Ai, Am, Ak) is true, no such agent Am can obtain key:r.

indirectly. For each Am, the trust against masquerading is true, hence no other agent except Ak

33

sends messages using keyx and the authenticity condition of channel(Ai, A~e) is satisfied. For
each Am, the message privacy trust is true, and hence no other agent except At. Ai and Am
obtain a secret message sent by Ai using keyx. But Ai knows the identities of Akt Ai and Am,
and hence the privacy condition of channel(Ai, A~c) is satisfied. Thus, the trusts are sufficient
for channel(Ai, A1e) to be established.

The proof that the authenticity trust is necessary is the same as that in Theorem 3.2.

We now show that each assignment to the variables keyx, msgx, Aml• Amz and Am that
falsifies either the forwarding trust or the key privacy trust or the trust against masquerading or
the message privacy trust can also falsify one of the two conditions of channel(Ai, A~c).

Consider the forwarding trust. Its negation can be written as:

(BiBjB~cowner(keyx, A~c) A send(Aj, keyx) A receive(Am2• keyx) A

-BiBjreceive(Am2• keyx)) V(BiBjB~cowner(keyx, A~c) A send(Akt keyx) A

receive (Aml• keyx) A -BjB1ereceive (Amt• keyx) V(BiBjB~eowner(keyx, A~c) A

BjBiereceive(Aml• keyx) A -BiBjB~ereceive(Amlt keyx)) (3.3)

In the above expression, if the first disjunct is satisfied, Ai uses keyx as the key of channel(Ai,
A~c), Amz receives keyx, but Ai does not receive the identity of Amz· Thus, the second channel
condition is not satisfied. If either the second or the third disjunct is satisfied, Ai uses keyx as
the key of channel(Ai, A1e), Am 1 receives keyx, but Ai does not receive the identity of Am 1•

Thus, again, the second channel condition is not satisfied. Hence the forwarding trust is neces­
sary.

The negation of the message privacy trust can be written as follows:

send (Ai, msgx) A B i receive (Ale, msgx) A receive (Am, msgx) A

(3.4)

If expression (3.4) is satisfied, Ai sends a secret message msgx to A1e, Am is able to decrypt
msgx, and Am sends msgx to some other agent. In this instance, the privacy condition of
channel(Ai, A1e) is not satisfied.

The negation of the key privacy trust can be written as follows:

BiBieowner(keyx, A~e) A send(Am, keyx) (3.5)

If expression (3.5) is satisfied, Ai uses keyx as the key of channel(Ai, A~e). and Am sends keyx to
some other agent whose identity Ai may not know. Thus, the privacy condition of channel(Ai,
A~e) is not satisfied.

The negation of the trust against masquerading can be expressed as:

receive (Ai, msgx) A Bi send (Ale, msgx) A send (Am, msgx) (3.6)

If expression (3.6) is satisfied, Ai receives a message msgx, Ai determines that the sender of
msgx is A1e, but the true sender of msg:x is Am. Thus, the authenticity condition of channel(Ai,
A~c) is not satisfied.

34

All of the above trusts, i.e., the authenticity trust, the forwarding trust, the key privacy

trust, the trust against masquerading and the message privacy trust are necessary.

This concludes the proof of Theorem 3.3.

0

The key and message privacy trusts exhibit an interesting property. In SKE-based compo­

sition of channel(Ai , A.t) from channels (Ai , A j) and (A j, A.t), let the key of channel(A j, Ai) be

keyy. For channel(Aj, Ai) to exist, for each agent A 11 that possesses keyy, message privacy trust

TMp(Aj• A 11 , A;) must be true. WhenAj sends A.t 's key, keyx on channel(Aj, A;). agentA11 can

receive keyx. However, T MP (Aj, A 11 , A;) requires that A 11 not reveal a message sent on

channel(A j, A;) and hence not reveal keyx. The condition that A 11 not reveal keyx is exactly the

requirement of the key privacy trust, T KP (A;, A 11 , A.t). Thus, the validity of the key privacy

trust, T KP (A j, A 11 , A;), follows from the validity of the message privacy trust, T MP (A j , A 11 , A;).

This is summarized by the following theorem.

Theorem 3.4 (Privacy Trust Theorem): VA;, Aj, A.t, A 11 , keyx,

(B;BjB.towner<..A.t• keyx) A TMp(Aj• A 11 , A;))=> TKP(A;, A 11 , A.t).

3.6. Composition of Two Dependent Channels

0

Suppose that channel(A;, A.t) is to be composed from channels (A;, A j) and (A j, A.t). Let

channels (A; , A j) and (A j , A.t) be dependent channels with channel(A; , A j) having been com­

posed earlier from channels (A;, A l), (A l , A i), ... , (A11
1, A j), and with channel(A j, A.t) having

been composed earlier from channels (A.t, A 'f), (A f, A f), (A,;, A.t) (see Figure 3.7). Being

dependent channels, channels (A;. Aj) and (Aj• A.t) have some trust requirements, and these

trust requirements get carried over to channel(A;, A.t). In contrast, component channels in

independent channel composition have no trust requirements.

m.sg kj

PRED kj => channel(AI<, Aj)

Figure 3.7: Dependent channel composition

-I

35

The channel composition mechanism is identical in independent and dependent channel

composition, but the trust requirements are different. To see why, let A1c: send its key, key);, to

Ai in a message msgki• and letAi forward keyx to A; in a message msgji to A;. Keyx is a public

key in the PKE scheme and a single key in the SKE scheme. In the SKE scheme msgki and

msgii are both secret messages encrypted using the algorithms of channels (A~c;, A1) and (A1, Ai)

respectively. In both SKE and PKE schemes, when Ai receives msgkj• Ai authenticates msglc:i

using the algorithm of channel(Aj, A~c;), and when A; receives msg1;. A; authenticates msgii

using the algorithm of channel(A;, Ai). However, the validities of these algorithms are con­

tingent upon the satisfaction of the trust requirements of the respective channels with which the

algorithms are associated. Thus the validities of messages msgJci and msgii, and the validity of

keyx transmitted in these messages, are dependent upon the trust requirements of the component

channels.

Let us compute exactly the effects of the trust requirements of the component channels on

the validity of keyx. The trust requirements of the component channels can in general be

expressed as trust predicates, which are boolean combinations of the trusts such as the authenti­

city trust, the forwarding trust, etc. Given the truth or falsity of the various trusts in these

boolean combinations, trust predicates can be evaluated to true or false. The satisfaction of a

trust predicate associated with a channel is necessary and sufficient for the satisfaction of the

authenticity and privacy conditions (given in Section 3.2) of the channel. Let predlc:j, prediJc,

predji and predij denote the trust requirements of channels (A~c;, A j), (A i, A1c:), (A j, A;) and (A;,

Aj) respectively 5• The effects of these trust predicates on channel(A;, A~c) are computed in four

steps:

(1) Ak sends its key, keyx to AJ in msgkJ: In the PKE scheme, there are no trust-related compu­

tations 6 at this step of the mechanism. In the SKE scheme, msglc:j is sent as a secret message,

and A~c; has to compute the set setm 1 of all agents Am 1 that can decrypt msglc:j. For each Am 1, a

key user-possessor trust involving A;, Am 1 and A1c: is required. Let T KUP (A;, setm 1, A1c:) =

{ T KUP (A;, Am 1, A~c;) I Am 1 e setm 1}. The key user-possessor trust requirement is expressed as

follows:

(3.7)

However, the set of agents that can decrypt msgki depends on the encryption algorithm of

channel(A~c, A j), which depends on pred1c:i. This dependency is expressed by modifying for­

mula (3.7) to:

(3.8)

(2) AJ receives msgkJ: In both PKE and SKE schemes, Ai authenticates msgkj using the algo­

rithm of channel(A1, A~c;). which is dependent onpredjl,- This dependency in the PKE scheme is

expressed as:

5 If channel(At. A 1), channel(A 1, At), channel(A 1, A;) and channel(A;, A 1) had been independent channels,

none of the trust predicates predti• predj/r.• pred1; and pred;1 would have been necessary, which is equivalent to say­

ing that the trust predicates would have been equal to the boolean constant ''TRUE''.

6 By trust-related computation at an agent we mean an encryption or decryption operation involving the key of

another agent.

predjle => channel (Ai, A~e)

In the SKE scheme, this dependency is expressed by modifying fonnula (3.8) to:

predile => (predlei => (TKup(Ai, setml• A~e) =>channel (Ai, A~e)))

36

(3.9)

(3.10)

(3) AJ forwards keyv in msgJ1 to A1: In the PKE scheme there are no trust-related computa­
tions at this step of the mechanism. In the SKE scheme, the key user-possessor trust is required

in all agents Am2 that can decrypt the secret message msgii. This requirement is expressed by

modifying fonnula (3.10) to:

T KUP (Ai, setm2, A*) => (predjle => (predlej => (T KUP (Ai, setm 1, A1e) =>

channel (A;, A~e)))) (3.11)

However, the set of agents that can decrypt msgii depends on the encryption algorithm of

channel(Ai, A;), which depends onpredii· Thus, fonnula (3.11) gets modified to:

predji => (TKup(Ai,setm2•A.t) => (predjle => (predlej => (TKup(Ai,setml•A.t)

=> channel (Ai, A~e))))) (3.12)

(4) A1 receives msgJ1: In the PKE scheme, the authenticity trust is required of A i. This require­

ment is expressed by modifying fonnula (3.9) to:

(3.13)

However, the validity of the determination of Ai as the sender of msgii is contingent upon the

validity of the algorithm of channel(Ai, A i) that Ai uses to authenticate msgji. This final depen­
dency in the PKE scheme is expressed by modifying fonnula (3.13) to:

(3.14)

In the SKE scheme, three trusts involving Ai, Ai and A1e are required, namely, the authenticity
trust, the forwarding trust and the key user-possessor trust. These trust requirements are
expressed by modifying fonnula (3.12) to:

(TA (Ai ,Aj, A~e) A TF(Ai, Aj, A~e) A TKup(Ai, Ai, A~e)) =>(predji =>

channel (Ai, A~e)))))) (3.15)

However, the identity of Ai used in the above expression is authentic only if the algorithm of

channel(A;, Ai) used by Ai to authenticate the received message msgii• is valid. Thus, we

obtain the following final expression for the SKE scheme:

predij => ((TA (Ai, Ai, A~e) A TF(Ai, Ai, A.~:) A TKup(Ai ,Aj, A.~:))=> (predji =>

channel (Ai, A.~:))))))) (3.16)

37

The following two theorems summarize all the above results regarding trust requirements in
PKE- and SKE-based dependent channel composition.

Theorem 3.5: Let dependent channels (Ai, Aj) and (Aj, Ak) be composed to form channel(Aj,

At) using the PKE scheme. Let the trust predicates associated with the two component chan­

nels be predij and predjk, respectively. The trust requirements of channel(Ai, Ak) are expressed

as follows:

predij => (TA (Ai, Aj, At)=> (predjk => channel(Ai, Ak)))

0

Theorem 3.6: Let dependent channels (Ai, Aj), (Aj, At), (Aj, Ak) and (Att Aj) be composed to

form (Ai, At) using the SKE scheme. Let the trust predicates associated with the four com­

ponent channels be predij, predji, predjt and predkj, respectively. Further, let the sets of agents

that can decrypt secret messages on channel(Ak, A j) and channel(A j, Ai) be setm 1 and setmz•

respectively. The trust requirements of channel(Ai, Ak) are expressed as follows:

predij => ((TA(Ai, Aj, Ak) A TF(Ai• Aj, Ak) A TKUp(Ai, Aj• Ak)) => (predji =>

(TKup(Ai, setm2• At)=> (predjt => (predkj => (TKUp(Ai, setml• Ak) => channel(Ai,
Ak)))))))

0

Notice that, since an independent channel is a special case of a dependent channel, in
which the trust predicate associated with the channel is the constant "TRUE", a composition
involving an independent channel and a dependent channel is a special case of dependent chan­
nel composition, and hence does not require a separate analysis.

We conclude this section with the observation that, as channels are composed to form
newer channels, the trust requirements propagate. With each channel composition, the number
of trusts required for the composed channel increases by a factor of two for the PKE scheme and
by a factor of four for the SKE scheme.

3.7. Composition of More Than Two Channels

A distributed system provides independent channels at the time of system configuration.
By Theorem 3.1, any other channel in the system must be composed from independent or

dependent channels using a sequence of two-channel compositions. Some of these two-channel
compositions will involve only independent channels, and some will involve dependent chan­

nels that are results of earlier two-channel compositions in the sequence. We now illustrate the
analysis of trust requirements in a sequence of two-channel compositions. Notice that, after a
channel has been established by composing a sequence of existing channels, the messages on

the channel do not have to follow the same route as the channel establishment messages. How­
ever, any agent that has the channel key can obtain a message on the channel by eavesdropping

on whatever route the message takes. Thus, the route taken by the messages does not affect the
trust requirements of the channel.

Figure 3.8 shows a sample distributed system, in which there are agents Ai, A j It A jZ• A j 3

and Ak, and there are existing independent channels (Ai, Aj 1), (Ajl• Ajz), (Ajz• Aj3) and (Aj 3,

Ak). Figure 3.8 can be thought of as part of the system's hierarchical name space

[Lu86, TPR84], in whichAjl• Aj 2 and Aj3 are name servers and there are independent channels

between each node and its parent.

38

Figure 3.8: Composition of more than two channels

Suppose a new channel, (A;, Ak), is to be established. Several sequences of two-channel
compositions can be used. One such sequence is:

(1) channels (A12, A13) and (A13, Ak) are composed to fonn channel(A12, Ak),

(2) channels (A11, A1~ and (A12, Ak) are composed to fonn channel(A11, Ak), and

(3) channels (A;. A11) and (A11, Ak) are composed to fonn channel(A;, Ak).

The intermediate channels, channel(A12, Ak) and channel(A1 1, Ak), are both dependent channels.
In the following two sub-sections, we analyze the trust requirements in the above sequence of
channel compositions using PKE and SKE schemes.

3.7.1. Sequence of PKE-based Channel Compositions

In the PKE scheme, each of the three compositions in the sequence requires an authenti­
city trust, and hence channel(A;, A.t) requires a conjunction of all the three authenticity trusts:

TA (AJ2• AJ3• Ak) A TA (Aft• AJ2• Ak) A TA (A;, Ail• A,t) (3.17)

3.7.2. Sequence of SKE-based Channel Compositions

SKE-based two-channel composition requires bidirectional component channels, hence,
all the independent channels must be bidirectional, and all the intennediate dependent channels
must be established in both directions. Thus, establishing channel(A;, A,t) in the system of Fig­
ure 3.8 consists of a sequence of five compositions. Thus, five authenticity trusts are required:

TA (Aj2• AJ3• Ak) A TA (A,t. AJ3• AJiJ A TA (Ajlo Aj1• A,t) A TA (Ak, AJ1• Ajl) A

(3.18)

Each of the five channel compositions also gives rise to a forwarding trust, resulting in the fol­
lowing predicate of forwarding trusts:

Tp(Ai1, Ai3, Ak) A Tp(Ak, Ai 3, AJiJ A Tp(Ajl, Aj1, Ak) A Tp(Ak, Ai1, Aj 1) A

39

(3.19)

Evaluating the key user-possessor trust requirements consists of evaluating the identities of
agents other than Ai and Ak who may have obtained the keys of the five newly established
channels when they participated in the sequence of channel compositions leading to the estab­
lishment of the new channels. Let us assume that the key of each independent channel is known
only to the two ends of the independent channel. In the first two compositions, the keys of
newly established channels (Ai 2, Ak) and (Ak, Aiv are known only to Ai3 in addition to Ai2 and
Ak. Thus, the first two compositions require two key user-possessor trusts, one for each compo­
sition:

(3.20)

In the next two compositions, channels (Ajlt Ak) and (Ak, Aj 1) are established from channels

(Aj 1, Ajv and (Aj2 , Ak). In these compositions, not only Ai2, but also Ai3 can obtain the keys
of channel(A i lt Ak) and channel(Ak, A i 1). Thus, the key user-possessor trust requirements prol­
iferate, and the key user-possessor trust requirements for the third and the fourth compositions
are:

Txup(Ajlt Ai2, Ak) A Txup(AjloAj 3,Ak) A TKup(Ak, Ai2, Ai 1) A

Txup(Akt Ai3, Aj 1) (3.21)

In the final composition, channel(Ai , Ak) is established from channels (Ai , A i 1) and (A i 1, Ak).
Agents A i 1, A i 2 and A i 3 can all obtain the key of channel(A;, Ak). Thus the key user-possessor
trust requirements for the final composition are:

Txup(Ai, Aj 1, Ak) A TKup(A;,Aj 2, Ak) ATKup(A;, Ai 3, Ak) (3.22)

The key user-possessor trust requirement for the entire sequence of compositions is a conjunc­
tion of the three formulae (3.20), (3.21), and (3.22).

It is interesting to observe that the trust expressions are not symmetric in Ajlt Ai2 and Ai3.

Hence, different channel composition sequences, even when they use the same set of indepen­
dent channels and establish the same final channel, may require different trust relationships.

3.8. Differences between PKE and SKE Schemes

It is clear from the previous sections that channel compositions using PKE and SKE
schemes require different trust relationships. In fact, the PKE scheme requires only a small sub­
set of the trusts required by the SKE scheme.

Using informal arguments, Popek and Kline [K1P79] claim that PKE and SKE schemes
have identical trust requirements. Because of their informal approach to trust, Popek and Kline
were not able to see differences in trust requirements between the PKE and SKE schemes, and
hence a number of advantages of the PKE scheme were not identified. To compare their
approach with ours, we briefly describe Popek and Kline's approach to determining trust
requirements in PKE and SKE-based channel composition mechanisms.

Consider the composition of channels (A;, Aj) and (Aj, Ak) to form channel(Ai, Ak). In

the PKE scheme, each channel requires a (public-key, private-key) pair. In particular, Ai must

possess its private key and Ak 's public key. Aj must keep its private key secret. For

channel(A;, Ak) to be established, A i forwards Ak 's public key to A;. In the SKE scheme, each

channel requires a single key. Channels (A; , A i) and (A j , Ak) require A j to possess their single

-I

40

keys. During the establishment of channel(Ai, Ak), A1 may come to know the single key of that
channel (since A1 is involved in forwarding it). A1 has to keep all the single keys in its posses­
sion secret However, notice that A1 can encrypt all the single keys in its possession with

another key key overaU and keep key overall secret. Since in the PKE scheme A i had to keep its
own private key secret anyway, one can conclude that in both PKE and SKE schemes A1 is
trusted to keep one key secret. Thus, the trust requirements in both the PKE and SKE schemes
are the same.

In the approach described above, Popek and Kline are using the notion of trust to represent
the secret-keeping behavior of an agent, and ignore all other aspects of agent behavior. This
lack of consideration of all the inherent assumptions in PKE and SKE-based channel composi­
tion mechanisms is a major drawback of their approach, and is a consequence of its infonnality.
Assumptions about keeping secrets are just one kind of assumptions necessary in channel com­
position mechanisms. For instance, in the SKE-based channel composition scenario, A1 is
assumed not only to keep the single key of channel(Ai, Ak) secret, but also not to use that single
key either for masquerading as Ak or for decrypting a secret message on channel(Ai, Ak). It
should be noted that, in our fonnal approach to trust, we capture all these assumptions.

Even with regard to assumptions about keeping secrets, there are three major differences
between the two approaches. The differences are best explained with reference to the composi­
tion of channels (Ai, A1) and (A1, A A:).

(1) In our approach (unlike Popek and Kline's), there is no trust requirement involving an
agent A1 if A1 has to keep its own private key secret Trust requirements involving A1
arise only when A 1 has to keep the key of some other agent or channel secret. To illus­
trate this difference, notice that. in the PKE scheme, if A1 's private key gets compromised
after channel(Ai, Ak) has been established, only A1 needs to change its private key, and Ai

and Ak are unaffected. In the SKE scheme, A1 has to keep the key of channel (Ai, Ak)

secret. and if this key gets compromised, Ai and Ak have to re-establish channel (Ai, Ak)

whereas A 1 is unaffected. Popek and Kline's approach does not yield these distinctions.

(2) Unlike Popek and Kline's approach, in our approach two trusts are different if the security
losses due to their being ill posed are different. To see this point, notice that, in the PKE
scheme, if A1 's private key gets compromised after channel(Ai, Ak) has been established,
security losses may involve resources owned by A1. In the SKE scheme, suppose A1
encrypts all the single keys in its possession with a key keyomall, and keeps key overall

secret. Security losses resulting from a leak of key overall may involve resources owned by
Ai, A 1, and Ak. Thus, the security losses due to a leak of A 1 's private storage are different
in the PKE and SKE schemes, and hence, in our approach, their trust requirements are
vastly different. Popek and Kline's approach does not make these distinctions, as is clear
from the fact that their approach equates the trust concerned with keeping A 1 's private key

secret with that with keeping key overall secret

(3) Popek and Kline's approach, unlike ours, captures only the steady state assumptions with
regard to keeping secrets. Thus, in SKE-based channel composition, even though A 1 can
store all the single keys_ encrypted with another key key overall, there is a finite time period
preceding the encryption by key overall during which more than one single key has to be
kept secret

To further see how our fonnal approach yields differei!·:es between PKE and SKE schemes,
notice that, in our approach, the SKE scheme requires four more trusts than the PKE scheme,
namely, the forwarding trust. the message privacy trust, the trust against masquerading, and the
key privacy trust. As we will now show, each of these additional trusts gives rise to important

41

differences between PKE and SKE schemes. The usual channel composition scenario involving
Ai, A j and Ak is used throughout

3.8.1. Differences Arising from the Forwarding Trust

Consider the SKE channel composition scenario depicted in Figure 3.6. Suppose that Am 1

obtained Ak 's key by decrypting msgkj. A security attack on Am 1 can make the key available to

the attacker, who can then compromise the security of channel(Ai, Ak). Thus, Ai must con­
stantly monitor the security situation at Am 1, and Ai must invalidate channel(Ai, Ak) the
moment it detects a security attack on Am 1• For Ai to take these actions, Ai must know the
identity of Am 1, which is what is exactly abstracted by the forwarding trust. In contrast, in the
PKE scheme, Am 1 can only obtain the public key of Ak, and an attack on Am 1 may reveal Ak 's
public key, but that does not pose any security danger to channel(Ai, Ak).

3.8.2. Differences Arising from the Message Privacy Trust

In the SKE scheme, Aj can decrypt secret messages sent by Ai on channel(Ai, Ak). Sup­
pose there is a security attack on A j after channel(Ai, Ak) has been established. Any secret
message on channel(Ai, Ak) that Aj might possess becomes available to the attacker. In the
event of a similar attack in the PKE scheme, A j , since it does not possess Ak 's private key, can­
not decrypt secret messages on channel(Ai, Ak), and hence secret messages on channel(Ai, Ak)

remain unavailable to Aj 's attacker.

3.8.3. Differences Arising from the Trust Against Masquerading

In the SKE scheme, Aj may have the key of channel(Ai, Ak) in its possession. Thus, Aj

can send messages masquerading as Ak on channel(Ai, Ak). In the PKE scheme, Aj, since it
does not possess Ak 's private key, cannot masquerade as Ak on channel(Ai, Ak).

3.8.4. Differences Due to the Key Privacy Trust

In the SKE, A j has the single key of channel(Ai, Ak). Suppose there is a security attack
on Aj after channel(Ai, Ak) has been established. Furthermore, suppose the attacker has kept
track of all encrypted messages exchanged on channel(Ai, Ak). Once the attacker obtains the
key from Aj, all past, present and future secret messages on channel(Ai, Ak) may become avail­
able to the attacker. In the event of a similar attack in the PKE case, since A j does not possess
the private key of Ak, past, present and future secret messages on the channel remain unavail­
able to the attacker. This difference has a significant impact on key caching and can be illus­
trated as follows. Consider Ak 's key which is used as the key of channel(Ai, Ak). When key
caching is used, at different moments different agents may cache Ak 's key. Some of these
agents may not have obtained Ak 's key for the purpose of encrypting messages to Akt but may
have obtained it together with some other keys from the name server for the sole purpose of
caching them. In the SKE scheme, since any agent that may have cached Ak 's key can decrypt
all past, present, and future messages on channel(Ai, A.tJ, Ai must place key user-possessor trust
in every agent at which Ak 's key may have been cached at some instant in time, even when
channel(Ai, Ak) is no longer in use. Such enormous trust requirements make caching highly
unattractive. In contrast, in the PKE scheme, caching of public keys can be used without limita­
tions. Note that, in distributed systems, caching in general is highly desirable from the
viewpoint of performance [Ter].

42

3.8.5. Differences with Regard to Replication

We will now illustrate that replication makes trusts easier to satisfy in the PKE scheme,
but makes trusts harder to satisfy in the SKE scheme.

Consider the scenario shown in Figure 3.9, in which there are independent channels (ibm,
ibm-j), (ibm-j, jap), (ibm, sony -us), and (sony -us, jap). Suppose a new channel called
channelA is established between ibm and jap by composing (ibm, ibm-j) and (ibm-j, jap).

In PKE-based composition, ibm obtains a key, key A , which is guaranteed to be the public key

of jap if the trust requirement (obtained using Theorem 3.3) TA (ibm, ibm-j, jap) for
channelA is satisfied. In SKE-based composition, ibm obtains a key, key A, which is guaranteed
to be the single key of jap if the trust requirement (obtained using Theorem 3.4) TA (ibm,

ibm -j , jap) A T F (ibm , ibm-j , jap) A T KUP (ibm , ibm-j , jap) for channel A is satisfied.

Suppose a second channel, channels , is established between ibm and jap by composing
(ibm, sony -us) and (sony -us, jap). In PKE-based composition, ibm obtains a key, ke)•s ,

which is guaranteed to be the public key of jap if the trust requirement TA (ibm, sony-us, jap)

for channels is satisfied. In SKE-based composition, ibm obtains a key, keys, which is

guaranteed to be the single key of jap if the trust requirement TA (ibm, sony-us, jap) A

T F (ibm, sony -us, jap) A T KUP (ibm, sony -us, jap) for channels is satisfied.

Suppose ibm compares the keys, key A and keys , and uses either one of them for
channel(ibm, jap) only if both are identical. In the PKE scheme, if at least one of ibm-j or
sony-us returns the valid public key of jap, the security of channel(ibm, jap) is guaranteed.
Thus, the trust relationship required for channel(ibm, jap) is a disjunction of the trust relation­
ships for channel A and channels (also see [VeA87]):

Figure 3.9: Replication of channels

43

TA (ibm, ibm_j, jap) V TA (ibm, sorry_us, jap) (3.23)

Thus, the trust requirements decrease with replication in the PKE scheme.

In the SKE scheme, even though it is necessary that at least one of ibm _j or sorry_ us
return the valid single key of jap, both ibm_j and sorry_us may possess the single key of jap,
and the forwarding and key user-possessor trusts are required of both agents. The forwarding
and key user-possessor trusts requirements are:

T F (ibm, ibm _j, jap) AT KUP (ibm, ibm _j, jap) A T F (ibm, sony_ us, jap) A

T KUP (ibm , sorry_ us, jap) (3.24)

This shows that the forwarding and key user-possessor trusts increase with replication in SKE
scheme. Thus, from the viewpoint of security, replication is advantageous in PKE systems but
disadvantageous in SKE systems.

In conclusion, our formal analysis has revealed several differences between PKE and SKE
schemes, and these differences make PKE schemes much more attractive than SKE schemes in
large distributed systems.

3.9. Conclusion

Trust arises primarily in establishing channels for secure communication. The only way
to establish a new channel is by composing a sequence of existing adjacent channels. There are
two kinds of channels: independent channels, which have no trust requirements and are pro­
vided by the system at configuration time, and dependent channels, which are composed from
independent channels and have trust requirements. Channel composition mechanisms are com­
monly based on either public key encryption (PKE) or single key encryption (SKE). PKE­
based channel composition requires what we have called ;.uthenticity trusts, which are functions
of three agents. SKE-based channel composition has much larger trust requirements than
PKE-based channel composition. The differences in trust requirements of PKE and SKE-based
channel compositions translate to significant advantages of PKE over SKE-based channel com­
position with respect to replication, caching, permanence of trust requirements, and so on. Dif­
ferent sequences of compositions, even though they use the same set of independent channels
and establish the same final channel, have different trust requirements. Thus, our analyses pro­
vide insight into the basic structure and limitations of mechanisms with regard to their trust
requirements.

CHAPTER 4

SYNTHESIS

We show that it is desirable to have a tree of independent channels in a distributed system,
and that this tree represents the global name space of the system. To establish a channel
between two agents in a name space, there are two alternatives for the order in which the
independent channels in the path between the two agents can be composed, and they are called
iterative and recursive. These two channel composition orders have different trust require­
ments and exhibit interesting duality properties. We develop algorithms for synthesizing name
spaces so that, given a channel composition order and the actual trusts of all agents, channel
composition between any two agents requires only a subset of the given set of trusts. The given
trusts are in general functions of three agents, but they can also be functions of two agents, in
which case the algorithms are simpler. We derive some NP-completeness results with respect
to putting bounds on the size of the database of encryption keys stored at each node in a name
space. Sample runs of the algorithms show that small differences in trust relationships can
cause substantial differences in the resulting name spaces.

4.1. Introduction

Agents sharing a distributed system have trust relationships among themselves. One of
the most important applications of a formal theory of trust consists of synthesizing a distributed
system that satisfies the trust relationships of the agents in the system. The synthesis of a sys­
tem from trust specifications was in fact the eventual goal with which we began our formal
study of trust.

In this chapter, we show how a distributed system's name space determines the trust
requirements needed for channel composition between every pair of agents, and we develop
algorithms for synthesizing a name space so as to satisfy a given set of trust specifications of
agents. Section 4.2 shows the association between a name space and a tree of independent
channels. In Section 4.3, we show that there are two alternatives for the order in which the
channels between two agents in a name space can be composed, which are called iterative and
recursive, and examine their trust properties. In Sections 4.4-4.9, we develop polynomial-time
algorithms for synthesizing name spaces given actual trusts of all agents. Each node in the
name space stores a database with the encryption keys of all its children, and it is desirable to
put bounds on the size of this database. We derive some NP-completeness results in this regard.
The polynomial-time name space synthesis algorithms to be described in Sections 4.4-4.9 have
been implemented and experimented with. Section 4.10 presents some interesting sample runs
of these algorithms, and finally, Section 4.11 concludes the chapter.

4.2. Necessity of Fast Channel Establishment Procedures in a VLDS

Any two agents in a distributed system must be able to communicate securely (see Figure
4.1). One way to achieve this is to have an independent channel between each pair of agents in
the system (see Figure 4.2). In such a system, no new channels need be established, and hence
there are no trust requirements for communication. However, there are several disadvantages in
having independent channels between all pairs of agents. Since independent channels have to
be established using external mechanisms, there would be O(n 2) channels that need to be

44

45

established using such mechanisms. External mechanisms, e.g., trusted couriers, are expensive,
extremely slow and cumbersome. Since having an independent channel to an agent requires
storing the agent's encryption keys, each agent would have to store the entire database of
encryption keys of all other agents.

Such a scheme has numerous performance disadvantages in a large distributed system.
For example, when an agent changes its keys, the agent has to inform every other agent of the
change through external mechanisms. When a new agent joins a distributed system, the new
agent has to choose n different channel keys and exchange its keys with every other agent in the
system through external mechanisms. In summary, in a large distributed system, it is not desir­
able to have a independent channel between each pair of agents. The number of independent
channels must be minimized.

Given an initial set of independent channels in a distributed system, any two agents must
be able to establish a channel by composing the independent channels and any existing depen­
dent channels between them. Therefore, if we represent the agents as nodes and independent
channels as edges in a graph, the initial graph of independent channels must be connected.

Let us suppose that we have a connected graph of independent channels. It was shown in
the previous chapter that the trust relationships required in establishing a channel between two
agents is determined by both the independent channels between the two agents and the order of
compositions of these independent channels. Thus, to establish a channel to an agent lbaraki ,
an agent such as Alice would have to keep a database of its trust relationships, and find a path to
lbaraki in the graph of independent channels such that the trust relationships in composing the
independent channels in the path in some order are present in the database. The channel estab­
lishment procedure would involve trying out a sequence of independent channels, backtracking
if either no path is found beyond a node in the graph or a path is found but the path requires

8

8
I alice I I ibaraki I

Figure 4.1: Agents in a sample VLDS

46

Figure 4.2: Independent channels between every pair of agents

trust relationships not present in its database, and so on (see Figure 4.3). The worst-case perfor­
mance of such a channel establishment procedure would be intolerable.

The goal of this chapter is to investigate whether, given the trust relationships of all agents

at system configuration time, we can synthesize a graph of independent channels so that,

between any two agents there is a path in the graph, and composition of the independent chan­

nels in the path in a pre-specified order requires only a subset of the given set of trust relation­
ships. Thus, an agent would not have to keep a database of its trust relationships, and at chan­

nel establishment time the agent would not have to check either the existence of a path or the

satisfiability of a path's trust requirements. Consequently, the channel establishment procedure

would be much faster.

What kind of a graph of independent channels should we synthesize ? It is desirable to

minimize the number of independent channels. A connected graph with a minimum number of

edges is a tree. Thus, our goal is to synthesize a tree of independent channels. We will later

examine the kinds of trees that are more preferable than others.

In a tree of independent channels connecting n nodes, there are exactly n -1 independent

channels yielding an average of one independent channel per agent, and there is a unique path

between each pair of agents. An agent in the tree must be able to determine the unique path

47

Figure 4.3: Inefficient channel establishment mechanism. In the worst case, Alice back­

tracks twice while finding a path to Ibarak.i.

between itself and any other agent without searching the entire tree. For instance, in Figure 4.3,

to establish a channel to ibaraki, it should not be necessary for alice to establish a channel to

ibm , backtrack after finding that there is no further path from ibm towards ibaraki , then estab­

lish a path to ibm-j, again backtrack since there is no further path from ibm-j to ibaraki , and

then establish a path to ibaraki through jap . In other words, given the names of two agents, it
should be possible to write down the independent channels between them without having to

traverse the entire tree.

To accomplish a fast translation from the names of two agents to the independent channels
between them, we encode the independent channels into the agents' names. Specifically, one of

the agents in the tree is designated as the root of the tree. This agent acts as the reference point

for naming the nodes of the tree. The name of an agent in the tree, referred to as its pathname ,

encodes the independent channels from the root to the agent. Given the pathnames of two

agents, one can easily write down the sequence of independent channels in the path between

them. Figure 4.4 illustrates this mechanism. In the tree shown in the figure, the agent named

world is designated as the root. Each pathname begins with a '' /' ', which denotes the root node

(world). The pathname of Alice is /usa/ibm/aim/alice and that of Ibaraki is ljaplibm-jlibaraki.

Given the pathnames lusalibm/alm/alice and Jjaplibm-jlibaraki, the independent channels

between Alice and Ibaraki are (alice, aim), (aim, ibm), (ibm, usa), (usa, root), (root, jap),

(jap , ibm _j), and (ibm _j, ibaraki). Since the tree of independent channels determines the

48

pathnames of agents, the tree is referred to as a name space of the distributed system. Each
node in the name space has independent channels to its children and to its parent. If indepen­
dent channels are PKE-based, each node keeps a database of public keys of its children and its

parent.

In practice, there are several factors other than security, such as administrative and geo­

graphical factors, that must be considered in designing a name space for a distributed system. A
name space that is optimal from the viewpoint of security may not be so from the viewpoint of

the other factors. As explained in Section 1.2, having two separate name spaces, one for secu­
rity purposes and a second one for other purposes, has significant performance drawbacks.
Thus, in practice, it is desirable to design a single name space, and the design must be carried

out as a compromise among several objectives, both security and non-security oriented.

It should be noted that a tree-structured name space does not imply a hierarchical trust

pattern. To see why, notice that a tree is hierarchical with respect to a property P if in the tree,
whenever P holds for a node, P also holds for the node's parent. In a tree-structured name

space, the trust relationships of a node need not form a subset of the trust relationships of the
node's parent. The number of trust relationships of a node can be much larger than that of the

node's parent.

Figure 4.5 illustrates the non-hierarchical nature of a name space tree. Let A be a child of
B, and M be a node that is not a descendent of B. B is on the path from A to each of A's non­
descendents. Thus, A requires a trust relationship involving B for establishing a channel to
each of A's non-descendents. C is on the path from A to each of B 's non-descendents. Thus,
A requires a trust relationship involving C for establishing a channel to each of B 's non­
descendents. The set of nodes that are non-descendents of B is a subset of the set of A 's non­
descendents. Thus, there are more trust relationships involving A and B than those involving A

root node("/")

/japlibm-jlibaraki

I usa/ ibm/ aim/ alice

Figure 4.4: Fast path finding mechanism

49

and C. Since A is a child of B, and the number of B 's children can be arbitrarily large, there
can be more trust relationships involving B than C, even though C is B 's parent in the tree.
None of these trust relationships involve A's descendents, and, using similar arguments, it can
be shown that a node in the tree need not fully trust all its descendents. Thus, there is no
hierarchical pattern with respect to trust relationships in a tree-structured name space. This can
also be inferred from the observation that the selection of the root, which determines the
parent-child relationships in the tree, can be arbitrary: any node can be designated as the root of
the tree. The root just acts as the reference node for naming all other nodes.

4.3. Channel Composition Algorithms

Suppose that a distributed system has a name space such as the one shown in Figure 4.4.
Given the names of two agents, say Alice and Ibaraki, we can write down the independent chan­
nels in the path between them. There are two possibilities for the order in which these indepen­
dent channels can be composed to form the required channel between Alice and lbaraki, called
iterative and recursive channel composition, respectively. These two channel composition
orders are illustrated next.

4.3.1. Iterative Channel Composition

Consider the case of channel establishment from Alice to lbaraki in the name space of
Figure 4.4. The iterative channel composition algorithm composes channels beginning from
Alice (see Figure 4.6) and consists of the following steps (see Figure 4.7):

Alice makes a remote invocation F 1 to the node next in the path from Alice to lbaraki, namely
aim, requesting the encryption key of ibm. aim returns ibm's key in the return message R 1•

This in effect composes the channels alice -aim and aim -ibm to form the channel alice -ibm .

Non-descendents of B

Descendents of B

N

Figure 4.5: Tree-structured name space does not imply hierarchical trust

-I

50

Alice makes a remote invocation F 2 to ibm requesting the key of usa. The return message R 2
containing usa's key results in the composition of channels alice-ibm and ibm-usa to from
the channel alice -usa.

Alice continues to make such remote invocations, and compositions of channels continue until
the channel alice -ibarald is established. Since alice repeatedly makes remote invocations in
this algorithm, the algorithm is called iterative channel composition.

Figure 4.8 illustrates the trust relationships in iterative channel composition. C is B 's
parent node, N is any descendent of B , and M is any non-descendent of B (i.e., any node not in
the subtree rooted at B). To establish channel M -N using iterative channel composition, M
successively establishes channels to nodes in the path from M to N. At some step M estab­
lishes a channel to C, and at the successive step it establishes a channel to B by composing
channels M -C and C -B. Using the results of Section 3.4, TA (M, C, B) is true. Similarly, to
establish channel N -M, N successively establishes channels to nodes in the path from N toM.
At some step N establishes a channel to B , and at the successive step it establishes a channel to

C by composing channels N -B and B -C. Hence, TA (N, B , C) is true. The next theorem
summarizes these results. We will use the term "node 1 trusts node 2 for node 3" to mean that
TA (node 1, node 2, node 3) is true.

Theorem 4.1: In iterative channel composition, all non-descendents of a node trust the node's
parent for the node, and all descendents of a node trust the node for the node's parent.

0

4.3.2. Recursive Channel Composition

Consider the case of channel establishment from Alice to lbaraki in the name space of
Figure 4.4. The recursive channel composition algorithm composes channels beginning from

lbaraki 1 (see Figure 4.9) and consists of the following steps (see Figure 4.10):

Alice makes a remote invocation F 1 to alm, which is the next node in the path from alice to

ibara/d , requesting the encryption key of ibarald .

When aim receives F 1 request, aim makes a remote invocation F 2 to ibm , requesting the pub­
lic key of ibara/d .

This sequence of remote invocations continues till finally jap makes a remote invocation F 6 to

ibm _j which is the node just ahead of ibaraki in the path from alice to ibaraki , requesting the
key of ibara/d .

Ibm_), which has ibaraki 's key, sends the key in a return message R 1• This in effect composes
the channels jap -ibm _j and ibm _j -ibaraki to form the channel jap -ibaraki .

This sequence of return messages and channel compositions continues, and towards the end the
return message R 5 results in the composition of channels aim -ibm and ibm -ibaraki to form the
channel alm -ibara/d.

Finally, the return message R 6 results in the composition of channels alice-aim and aim­
ibara/d to form the required channel alice -ibaraki .

1 It should however be noted that, even though channel composition begins from Ibaraki. the initiative always
starts from Alice.

51

Figure 4.6: An instance of iterative channel composition. In channel establishment from
Alice to Ibaraki, channel composition starts from Alice.

Figure 4.7: Remote invocations in· iterative channel composition. In channel establish­
ment from Alice to Ibaraki, Alice successively makes remote invocations to nodes in its

path to Ibaraki.

52

Non-descendents of B

N

Figure 4.8: Trust relationships in iterative channel composition

53

Figure 4.9: An instance of recursive channel composition. In channel establishment from

Alice to Ibaraki, channel composition starts from Ibaraki.

Fl, F2, ... , F6: forward RPC requests

Rl, R2, ...• R6: RPC replies

Figure 4.10: Remote invocations in recursive channel composition. In channel establish­

ment from Alice to Ibaraki, Alice makes a recursive remote invocation to its parent

54

In this algorithm, alice makes a remote invocation F 1 within which there is a remote

invocation F 5, and so on Thus alice makes a recursive remote invocation, and the algorithm is

called recursive channel composition.

Figure 4.11 illustrates the trust relationships in recursive channel composition. C is B 's

parent node, N is any descendent of B , and M is any non-descendent of B . To establish chan­

nel N -M using recursive channel composition, channels are successively established to M from

nodes in the path M -N in the name space. At some step C establishes a channel to M, and at

the successive step B establishes a channel to M by composing channels B -C and C -M .

Using the results in Section 3.4, TA (B, C, M) is true. Similarly, to establish channel M -N,

channels are successively established toN from nodes in the path N -M in the name space. At

some step B establishes a channel toN, and at the successive step C establishes a channel toN

by composing channels C -B and B -N. Hence TA (C, B, N) is true. Theorem 4.2 summarizes

these results.

Theorem 4.2: In recursive channel composition, a node trusts its parent for the node's non­

descendents, and the parent of the node trusts the node for the node's descendents.

0

Having obtained the trusts required by iterative and recursive channel composition in

Theorems 4.1 and 4.2 above respectively, we are now ready to tackle the design problem men­

tioned at the beginning of this chapter: Assuming that the trust relationships of all agents and a

channel composition order are given, a tree-structured name space is to be synthesized so that

only a subset of the given set of trust relationships is necessary for establishing a channel

between any pair of agents in the distributed system. The next section discusses the nature of

trust relationships that might be specified in such a design problem.

Non-descendents of B

M

Descendents of B

N

Figure 4.11: Trust relationships in recursive name resolution

55

4.4. Trust Specifications

In Section 3.7, it was shown that the trust relationships required by PKE-based channel
composition protocols fonn a proper subset of the trust relationships required by SKE-based
channel composition protocols. However, current hardware implementations of SK.E are
several orders of magnitude faster than those of PKE. In the next chapter, we will present pro­
tocols that establish channels using PK.E but switch-over to SKE once a channel has been esta­
blished. These protocols have the smaller trust requirements of PKE-based channel composi­
tion but have the performance of SKE. Thus, in synthesizing name spaces we assume that the
trust requirements are those of PK.E-based channel composition. By Section 3.4, we know that
PKE-based channel composition requires authenticity trusts, which are (boolean) functions of
three agents. Thus, we assume that trust specifications for synthesizing name spaces are in gen­
eral 3-agent authenticity trust predicates. Nevertheless, the synthesis algorithms that we
develop in the following sections can also be used for designing SKE-based name spaces, if,
wherever we check for the satisfaction of the authenticity trust involving three agents, we also
check for the satisfaction of the forwarding trust and of the key user-possessor trust involving
the same three agents.

However, trust specifications can also be functions of two agents. The next section inves­
tigates such trust specifications.

4.5. Two-Agent Trust Specifications

When an agent specifies its trust relationships, it is common for the trust relationships to
take one of the following two forms:

(1) An agent trusts another agent,

(2) An agent is trusted for another agent

Such trust relationships involve two agents, and can be thought of as simplifications of the gen­
eral 3-agent trust predicates required in channel composition. The first of the 2-agent trust rela­
tionships above can be thought of as resulting from the elimination of the last argument of a 3-
agent trust relationship of the form, ''an agent A trusts an agent B for every other agent''. We
will denote such a 2-agent trust relationship by TA (A, B, *). The second 2-agent trust relation­
ship can be thought of as resulting from the elimination of the first argument of a 3-agent trust
relationship of the fonn, "every agent trusts an agent B for an agent C ". We will denote such
a 2-agent trust relationship by TA (*, B, C).

The pennutation of the two types of 2-agent trust relationships with iterative and recursive
channel composition results in four combinations. These four combinations have some interest­
ing properties, which we investigate in next.

4.5.1. Iterative and Recursive Channel Composition

Suppose that trust specifications are of the form TA (node 2, node 1, *), and that the channel
composition order is iterative. Consider any node B in the name space. Let N be any descen­
dent of B, and C be the parent of B (see Figure 4.12). By Theorem 4.1, TA (N, B, C) is true.
Since trust specifications are all of the form TA (node 2, node to *), satisfying TA (N, B, C)
requires that TA (N, B, *)be true. Thus we have the following lemma:

Lemma 4.1: Suppose that trust specifications are of the form TA (node 2, node 1, *) and that the
channel composition order is iterative. In any name space, all the descendents of each node
trust the node.

56

Non-descendents of B

Descendents of B

N

Figure 4.12: Effect of iterative channel composition when trust relationships are of the
form TA (node 2• node 1o *)

0

Considering the same figure (Figure 4.12), let M be any non-descendent of B and A be any
child of B . By Theorem 4.1, TA (M, B , A) is true. Since trust specifications are of the form
TA (node 2, node 1, *),satisfying TA (M, B, A) requires that TA (M, B, *)be true. Thus we have
the following lemma:

Lemma 4.2: Suppose that trust specifications are of the form TA (node 2, node 1, *) and that the
channel composition order is iterative. In any name space, all the non-descendents of each node
trust the node.

0

Lemmas 4.1 and 4.2, together with the observation that every node is either a descendent or a
non-descendent of a node, yield the following theorem:

Theorem 4.3: If trust relationships are of the form TA (node 2, node 1, *) and channel composi­
tion is iterative, all the nodes in any name space are globally trusted.

0

Now consider the situation when trust specifications are of the form TA (* , node 1, node 0
and the channel composition is recursive. Let B be any node, A be any child of B and M be
any non-descendent of B (see Figure 4.13). By Theorem 4.2, TA (A, B, M) is true. Since trust
specifications are all of the form TA(*,node 1,nodei), satisfying TA(A,B,M) requires that
TA (*, B, M) be true. Thus, we have the following lemma:

-I

57

Non-descendents of B

Descendents of B

N

Figure 4.13: Effect of recursive name resolution when trust relationships are of the fonn
TA (*,node 1o nodei)

Lemma 4.3: When trust specifications are of the fonn TA (*,node 1, nodei) and the channel
composition is recursive, in any name space, each node is trusted for all its non-descendents.

D

Considering the same figure (Figure 4.13), let C be the parent of B and N be any descendent of
B. By Theorem 4.2, TA (C, B, N) is true. Since trust specifications are all of the fonn

TA (* , node 1, node i), satisfying TA (C , B , N) requires that TA (* , B , N) be true. Thus, we have
the lemma:

Lemma 4.4: When trust specifications are of the fonn TA (* , node 1, node :z) and the chan­

nel composition is recursive, in any name space, each node is trusted for all its descendents.

D

Lemmas 4.3 and 4.4, together with the observation that every node is either a descendent or a
non-descendent of a node, yield the following the theorem:

Theorem 4.4: If trust relationships are of the fonn TA (*,node 1, nodez) and channel composi­
tion is recursive, all the nodes in any name space are globally trusted.

D

Since our primary goal is the elimination of global trust requirements, by Theorems 4.3
and 4.4, it is clear that the combinations TA (node 2, node 1, *) plus iterative channel composi­

tion and TA (* , node 1, node :z) plus recursive channel composition are not interesting.

Let us now consider the remaining two combinations. We model the combination
TA (*, node 1, node :z) plus iterative channel composition by a directed graph called IT -graph,

58

in which there is an edge node 1node2 if and only if node 1 is trusted for node2, i.e., if

TA (*,node 1, node2,) is true (see Figure 4.14(a)). In the name space, if C is the parent of a node

B , M is any non-descendent of B , and N is any descendent of B , by Theorem 4.1 TA (M, C , B)

and TA (N, B, C) are true (see Figure 4.14(b)). If B is a leaf, thenB does not have any descen­

dent N and only TA (M, C, B) is true. Since trust specifications are of the form

TA (*, node 1, node2,), satisfying TA (M, C, B) and TA (N, B, C) requires that TA (*, C, B) and

TA (*, B, C) be true. If B is a leaf, only TA (*, C, B) need be true. This result is summarized

in the following theorem:

Theorem 4.5: Suppose that the trust specifications are of the form TA (*,node 1, node2,), and

that the channel composition is iterative. A name space satisfies a given set of trust

specifications if and only if the following two conditions are satisfied:

(1) If there is a link C -B in the name space and B is not a leaf, then TA (*, C, B) and

TA (*, B, C) must be true, i.e., there must be edges CB and BC in the IT-graph for the

trust specifications.

(2) If there is a link C -B in the name space and B is a leaf, TA (*, C, B) must be true, i.e.,

there must be an edge CB in the IT -graph for the trust specifications.

0

The fourth and the final combination is of the form TA (node 2, node 1, *) with recursive

channel composition. We model this combination by a directed graph called RT -graph, in

which there is an edge node 1node 2 if and only if node 2 trusts node 1, i.e., TA (node 2, node lt *)

(see Figure 4.15(a)). In the name space, if C is the parent of a node B, M is any non­
descendent of B, and N is any descendent of B, by Theorem 4.2 TA (B, C, M) and

TA (C, B, N) are true (see Figure 4.15(b)). If B is a leaf, then B does not have any descendent

node 2

(a)
N

Figure 4.14: IT-graph representation of trust relationships of the form

TA (*, node 1, node2,) when channel composition is iterative. (a) There is a directed edge

node 1node 2 in the IT-graph if and only if TA (*,node to node2,) is true. (b) If there is an

independent channel C -B in the name space and B is not a leaf, then there must be edges

CB and BC in the IT-graph.

59

N, and only TA (B , C, M) is true. Since trust specifications are of the fonn
TA (node 2, node 1, *), satisfying TA (B, C, M) and TA (C, B, N) requires that TA (B, C, *) and
TA (C, B, *) be true. If B is a leaf, only TA (B, C, *) need be true. The following theorem
summarizes these results:

Theorem 4.6: Suppose that the trust specifications are of the form TA (node 2, node 1, *), and
that the channel composition is recursive. A name space satisfies a given set of trust
specifications if and only if the following two conditions are satisfied:

(1) If there is a link C -B in the name space and B is not a leaf, then TA (B, C, *) and
TA (C, B, *) must be true, i.e., there must be edges CB and BC in the RT-graph for the
trust specifications.

(2) If there is a link C -B in the name space and B is a leaf, TA (B , C , *) must be true, i.e.,
there must be an edge CB in the RT -graph for the trust specifications.

0

4.5.2. Duality

It may be observed that Theorems 4.5 and 4.6 are identical except for the fact that the last
and the first arguments to the trust predicates are interchanged. In other words, the combination
TA (node 2, node 1, *) coupled with recursive channel composition is a dual of
TA (*,node 1, node~ coupled with iterative channel composition, with the first trust argument
replacing the role of the last trust argument. This is summarized in the following theorem:

Theorem 4.7 (Duality Theorem): The algorithms for synthesizing name spaces for the combi­
nation TA (* , node 1, node~ plus iterative channel composition become the algorithms for syn­
thesizing name spaces for the combination TA (node 2, node 1, *)plus recursive channel compo­
sition, if the last and first arguments of the trust specifications are interchanged. The converse

T(n~. noder *):

node 2

(a)
N

Figure 4.15: Trust relationships are of the fonn TA (node 2, node 1, *)and channel compo­
sition is recursive. (a) There is a directed edge node 1 node 2 in the RT -graph if and only if
TA (node 2, node 1, *) is true. (b) If there is an independent channel C -B in the name
space, and B is not a leaf, then there must be edges CB and BC in the RT -graph.

60

of this statement is also true.

0

A consequence of Theorem 4.7 is that developing name space synthesis algorithms only
for the combination TA (* , node 1, node z) plus iterative channel composition is sufficient.

The arguments to trust specifications are agents, which represent organizations and indivi­
duals sharing a distributed system. These agents occur as nodes in a name space for the system.
There are two kinds of nodes in a name space, namely, internal nodes and leaf nodes. The inter­
nal nodes serve as managers of databases of keys and have agents as their owners, and hence
they are referred to as name servers. The leaf nodes represent the agents themselves. A single
agent may own several name servers, but each agent is represented by a unique leaf node in a
name space. Hence, in synthesizing name spaces, we assume that more than one internal node
can correspond to the same agent, but one and only one leaf node must correspond to each
agent, and every agent appears as a leaf node.

4.6. Name Space Synthesis Given Two-Agent Trusts and Iterative Composition

In this section we develop an algorithm for synthesizing name spaces for the combination
TA (*, node 1, nodez) plus iterative channel composition. The input to the algorithm is a set of

trust specifications of the form TA (*,node 1, nodez).

4.6.1. The Synthesis Algorithm

The first step of the algorithm is to synthesize the IT -graph for the given trust

specifications (Figure 4.16-a). The IT-graph is then transformed into an undirected graph by
replacing all bidirectional edges with undirected edges, and by deleting all unidirectional edges
(Figure 4.16-b). The resulting undirected graph is converted into a spanning forest (Figure
4.16-c). If there is any isolated node in the spanning forest such that in the original IT-graph
there is an edge towards it from another node, an undirected edge is added between these two
nodes in the spanning forest (Figure 4.16-d).

61

A A

B B c
.

D •
D

(a) . (b)

······-·····-··+··

A A

B c B c

•
D D

(c) (d)

Figure 4.16: Name space synthesis from trust functions of the fonn TA (*, node 1, nodez.)
and iterative channel composition. (a) A sample IT-graph. (b) Bidirectional edges re­
placed by undirected edges, and unidirectional edges are removed. (c) Transfonnation of
the undirected graph to a spanning forest (d) An isolated node such as D is re-attached if
there is an edge towards it in the IT -graph.

62

If the resulting spanning forest contains more than one tree, then no tree-structured secure name
space is possible. On the other hand, if there is only one tree in the spanning forest, one of the

nodes is selected as the root, and all the nodes in the tree are given their pathnames as names.
The resulting name space satisfies the given trust specifications when iterative channel composi­
tion order is used. The exact algorithm is as follows:

Algorithm 4.1

construct IT-graph for the given trust specifications;
for (each edge AB in the IT -graph) do {

}

if (there is no edge BA) then {
delete AB from the IT -graph;

} else {
delete AB and BA ;
add undirected edge AB ;

} fi

for (each connected component in IT-graph) do {
transform to a spanning tree;

}
for (each node A in the spanning forest) do {

if (A is an isolated node) then {

} fi
}

if (there is an edge NA in the original IT -graph) then {
add an undirected edge NA ;
mark A as a leaf;

} fi

if (there is more than one tree in the forest) {
print(no name space exists);

} else {
return;

select any node R that has not been marked as a leaf;
mark R as the root of the tree;
for (each node) do {

label it with its complete pathname;

return the constructed name space;

4.6.2. Correctness and Complexity of Algorithm 4.1

In the following theorem, we show the correctness and derive the computational complex­

ity of Algorithm 4.1.

Theorem 4.8: If Algorithm 4.1 constructs a name space, the constructed name space satisfies
the given set of trust specifications when iterative channel composition is used. If a name space

63

exists, Algorithm 4.1 constructs a tree-structured name space. The algorithm's worst-case
time-complexity is O(max(number of trusts, number of agents)).

Proof: We first prove the first part of the theorem, i.e., that, if Algorithm 4.1 constructs a name
space, the constructed name space satisfies the given set of trust specifications when iterative
channel composition is used. Suppose the algorithm constructs a name space NS . Consider
each edge BC in NS . Let C be the parent of B . If B is not a leaf, BC was an outcome of the

second for-loop of Algorithm 4.1, hence BC was an undirected edge in a connected component
at the beginning of that for-loop, and therefore BC was an undirected edge in a connected com­
ponent at the end of the first for-loop. Thus, there are edges BC and CB in the IT-graph. If B
is a leaf, then it is an outcome of the third for-loop, and hence there is an edge CB in the IT­
graph. Applying Theorem 4.5, we obtain that NS satisfies the given trust specifications. This
completes the proof of the first part of the Theorem.

Suppose that a name space NS exists for the given trust specifications. We now show that
the algorithm will construct a name space. Applying Theorem 4.5, the IT-graph must contain at
least (1) bidirectional edges corresponding to the links between two internal nodes in NS , and
(2) unidirectional edges corresponding to links between an internal node and a leaf node inNS.

Thus, at the end of the first for-loop of Algorithm 4.1, there will be a connected graph in which

all the internal nodes of NS are present, and at the end of the second for-loop, this connected

graph will get transfonned into a tree. All the nodes not in this tree will get added as leaves to

the tree in the third for-loop. Thus, Algorithm 4.1 yields a tree-structured name space if one
exists.

Let us now derive the worst-case time complexity of Algorithm 4.1. The number of edges
is of the order of the number of trust relationships. Suppose that this number is e. Suppose that

the number of nodes, which is the number of agents, is n . The complexity of the first for-loop
is O(e), the complexity of the second for-loop is the complexity of constructing a spanning tree,
which is O(max(e, n)), and the complexity of the last for-loop is O(n). Thus, the complexity
of Algorithm 4.1 is O(max(e , n)).

This completes the proof of Theorem 4.8.

D

Algorithm 4.1 gives one possible name space satisfying the given trust relationships.
There may be more than one name space satisfying the same given set of trust relationships. In
a name space, each node has to store a database of encryption keys of all its children. In a name
space in which the root is the parent of all other nodes (see Figure 4.17-a), the root has to store
the entire database containing the keys of all other agents in the system, resulting in a central­
ized name server. At the other end of the spectrum is a name space corresponding to a hamil­

tonian path (Figure 4.17-b), in which each node has to store just one key (that of its sole child).
Both of these extreme name space configurations are undesirable. Therefore, it is desirable to
put bounds on the number of children of each node in a name space. However, the next section
derives some NP-completeness results with respect to these bounded-children name space
design problems [AHU74, GaJ79].

4.6.3. NP-Completeness Results

The next theorem shows that the problem of putting an upper bound on the number of
children of each node in a name space is NP-complete. But before we prove the theorem, we

need two graph-theoretic lemmas, which we prove next. The next lemma shows an equivalence
between hamiltonian paths and bounded-children spanning trees in graphs.

64

Figure 4.17: Extreme cases of name space configuration when the number of children of a
name space node cannot be bounded. (a) Name space in which the root is the parent of all
other nodes. (b) Name space that is a hamiltonian path.

Lemma 4.5: Let G be a graph for which the existence of a hamiltonian path is to be deter­
mined. Suppose that we construct a graph G' by adding new edges and new nodes as follows
(see Figure 4.18): to each node V in G, we add u-2 new edges, each edge connecting V and a
new node. A hamiltonian path for G is a spanning tree for G' , and in the spanning tree, each
node has at most u children. The converse of this statement is also true.

Proof: Suppose that there is a hamiltonian path H for G . Let the set of new nodes and the set
of new edges added to form G' be denoted by Na' and Ea'. When we add an edge of Ea' to H,
a new node gets added to H , and H remains a tree (i.e., no cycles are created). Thus, when we
add all the edges of Ea· to H, we obtain a tree T for G' . In T , each node has at most two
edges of H and at most u-2 edges of Ea' incident on it Thus, there is an upper bound of u on
the number of children of each node in T.

Suppose that there is a spanning tree T for G' with an upper bound of u on the number of
children of each node. Since each edge of Ea' connects a new node of N G' to T , and all nodes
of Na' must be present in a spanning tree, all the edges of Ea' must be present in T. Each node
of N G' is a terminal node in T . Thus, when we remove the nodes of N G' from T , we obtain a
tree T in which all the nodes except those of N G' , i.e., all the nodes of G , are present Hence, T
is a spanning tree for G. Each node ofT must have had u-2 more edges incident on it in T
(since in T, each of these nodes was connected to u-2 nodes of Na'). But in T, each node has
at most u edges incident on it. Thus, each node in T can have at most 2 edges incident on it. A
tree in which each node has at most 2 edges incident on it is a hamiltonian path. Hence, T is a
hamiltonian path for G. This completes the proof of Lemma 4.5.

65

0

The next lemma proves equivalence between any spanning tree of a graph and the IT­
graph for the graph. This equivalence is used in both Theorem 4.8 and Theorem 4.9.

Lemma 4.6: Given a graph G , suppose that we construct an IT -graph ITG by replacing each

edge in G with a bidirectional edge. Any name space synthesized for lTG is a spanning tree 2

of G , and any spanning tree for G is a name space for lTG .

Proof: Using Theorem 4.5 and the fact that lTG contains only bidirectional edges, we obtain
that for each edge in NS there is a bidirectional edge in ITG . Since for each bidirectional edge
in ITG there is an undirected edge in G , for each edge in NS there is an edge in G . Thus, NS

is a subgraph of G .

Consider any spanning tree T for G . For each edge in T, there is a bidirectional edge in
ITG, and hence, by Theorem 4.5, T is a name space for lTG . Thus, any spanning tree for G is
a name space for ITG. This completes the proof of Lemma 4.6.

0

B2

B3

B

Al Cl

c A2
C2

A3

(a) (b)

Figure 4.18: Construction of a graph G' from a graph G in Lemma 4.5 when u=5. (a) A
sample graph G. (b) G' obtained from G by adding u-2 = 3 new edges to each node V
in G , each new edge connecting V and a new node.

~en we say a name space is a spanning tree for a graph G, we mean that all the nodes of G are present in the

name space and there are no cycles in the name space.

-I

66

Theorem 4.9: For the combination TA(*, node 1, nodei) plus iterative channel composition,

synthesizing a name space with a given upper bound on the number of children of each node is

NP-complete.

Proof: To prove that the problem is in NP, we first show that guessing a solution and checking

the validity of the guessed solution has polynomial time complexity [AHU74, GaJ79]. Let the

number of agents be V, and the upper bound be u. To build a name space, we have to

enumerate V -1 edges, and designate one of the nodes as the root Checking the validity of the

guessed name space consists of the following steps:

(1) The name space must be connected and tree-structured (i.e., there must not be any

cycles in the name space).

(2) The name space must satisfy the given trust specifications. Thus for each edge
between internal nodes in the name space, there must be bidirectional edges in the IT­
graph for the given trust specifications. For each edge between an internal node and a leaf

node in the name space, there must be an edge from the internal node to the leaf node in

the IT -graph. In all there are V -1 edges in the name space.

(3) The number of children of each node must not exceed u.

Each of these steps can be carried out in O(V) time. Thus the problem is in NP.

It is known that determining the existence of a hamiltonian path in a graph is an NP­
complete problem [AHU74, GaJ79]. We reduce this NP-complete problem to our problem of

putting an upper bound on the number of children of each node in a name space. To achieve
this reduction, given a graph G for which the existence of a hamiltonian path is to be deter­
mined, we construct a graph G' as follows (see Figure 4.18): to each node V in G, we add u -2
new edges, each edge connecting V and a new node. By Lemma 4.5, to determine the existence

of a hamiltonian path for G , it suffices if we determine the existence of a spanning tree for G'

with each node having at most u children.

We now construct an IT -graph lTG' by replacing each edge in G' with a bidirectional

edge. By Lemma 4.6, a spanning tree with an upper bound of u on the children of each node

exists for G' if and only if there is a name space for lTG' with the same upper bound. Con­

structing G' from G is an O(n xu) operation, and if e is the number of edges in G , constructing

lTG' from G' is an O(e) operation. However, the upper bound u cannot exceed the number of

nodes n , and the number of edges cannot exceed the square of the number of nodes. Therefore,

the complexity of the two constructions together is O(n 2). Thus we have reduced the problem

of determining the existence of a hamiltonian path for G to the bounded children name space

problem in polynomial time. Since the hamiltonian path problem is NP-complete, the bounded

children name space problem is NP-complete.
0

Now consider the other extreme case (Figure 4.17(b)). We consider two approaches to

avoiding such an extreme case. In the first approach, we assume that an agent can occur either

as a leaf node or as an internal node in a name space, and try to put a lower bound on the

number of leaves in a name space. In the second approach, we try to put a lower bound on the

number of children of each node in a name space.

Theorem 4.10: Consider the combination TA (*, node 1, nodei) plus iterative channel composi­

tion. If an agent can occur either as a leaf node or as an internal node in a name space, syn­

thesizing a name space in which there is a given lower bound on the number of leaf nodes is

NP-complete.

67

Proof: Proving that the problem is in NP is identical to the proof we gave in Theorem 4.9,
except that, while checking the validity of a guessed name space, we have to check for the
minimum, rather than the maximum, number of children of a node in the name space.

It is known that the following problem is an NP-complete problem [AHU74, GaJ79]:
Given a graph G and a positive integer K < n (where n is as usual the number of vertices in the
graph), does the graph have a spanning tree such that the number of leaves in the tree is at least
K ? A straight-forward application of Lemma 4.6 yields the reduction from this NP-complete
problem to the bounded leaf name space problem.

0

Now consider the problem of putting a lower bound on the number of children of each
node in a name space. The following algorithm gives a reduction from the bounded leaf prob­
lem to bounded children name space problem. Let the given graph in the bounded leaf problem
be G having n vertices.

Algorithm 4.2

for (each set vert of n -K vertices in the graph G) do {
construct a graph G' from G by:

}

coalescing the subgraph fonned by vert into a single node x;
construct an IT -graph lTG' by:

replacing each edge in G' by a bidirectional edge;
if (lTG' has a name space with children of each node bounded below by K)
{

}

print(G has a spanning tree with number of leaves bounded below by K);
return(success);

print("G does not have a spanning tree with number of leaves ;;:: K ");
return(failure);

Figure 4.19 illustrates the coalescing step of the algorithm. The subgraph fonned by the
vertices B, C1 and C2 in the graph of Figure 4.19-a are coalesced to fonn the graph of Figure

4.19-b. To coalesce the subgraph S fonned by a set of vertices verts in a graph 3, we carry out
the following steps:

(1) A single new node x replaces the nodes in the set verts.

(2) All edges between nodes within verts are deleted.

(3) Each edge between a node w outside verts and a node within verts is replaced by an edge
between w and x.

3 The subgraph S consists of the vertices in verts and the edges between nodes within verts.

68

(4) All other nodes and edges are retained.

We now show that Algorithm 4.2 returns success if and only if there is a solution for the
bounded leaf problem. Suppose that Algorithm 4.2 gives an affinnative answer in the if-step.
By Lemma 4.5, a name space for lTG' is a spanning tree for G'. Thus, G' has a spanning tree

T G' with the number of children of each node at least K. Since the number of leaves in a graph
is no less than the smallest number of children of a node in a tree, the number ofleaves ofT G' is
at least K. To obtain a spanning tree T 0 for the original graph G , we de-coalesce the coalesced
node n in T G' into its original subgraph S , and transfonn the subgraph S into a spanning sub­
tree. All the leaves except possibly x ofT G' remain as leaves ofT a. If x is a leaf in T G', when
x is de-coalesced to obtain T a, x fans-out into at least one leaf. Thus T a has a number of
leaves at least equal to that of T G' , and hence T a has its number of leaves at least K. Thus, if
Algorithm 4.2 gives an affinnative answer, G has a tree in which the number of leaves is at
least K. Such a tree is a solution for the bounded leaf problem. Thus, if Algorithm 4.2 gives an
affinnative answer, there is a solution for the bounded leaf problem.

We now show that, if there is a solution to the bounded leaf problem, Algorithm 4.2 gives
an affinnative answer. Suppose that there is a solution to the bounded leaf problem. Thus,
there is a spanning tree T a for G whose number of leaves is at least K. If we coalesce the inte­
rior nodes of tree T a , we obtain a tree T G' which has only one internal node, and all the leaves
ofT 0 are children of this internal node. Thus, the number of children of the only node in T G' is
at least K. By Lemma 4.5, T G' is also a name space for lTG'. Thus, Algorithm 4.2, when it
coalesces the nodes of G that occur as interior nodes ofT 0 , will yield an affinnative answer.

In summary, Algorithm 4.2 yields an affinnative answer if and only if the bounded leaf
problem has a solution. Thus, Algorithm 4.2 is a reduction from the bounded leaf problem to

our bounded children name space problem.

The complexity of Algorithm 4.2 is as follows. There are C(n, n-K) = O(nK) possibili­
ties for a set of n -K vertices. Coalescing G to G' involves looking at each of the vertices and

B-Cl-C2

A3
A4

(a) (b)

Figure 4.19: Reduction of "bounded leaf' problem to "bounded children name space
design" problem by coalescing internal nodes. The internal nodes B , C 1 and C 2 in the
graph shown in (a) are coalesced to get the graph shown in (b).

69

edges in G, and hence is of complexity 0 (max(n ,e)). Transforming G' to lTG' is an 0 (e)
operation. Thus, the complexity of Algorithm 4.2 is of the order of,

nK x (max (n ,e)+ complexity of bounded children name space problem).

4.7. 3-Agent Trust Specifications

In this section we develop algorithms for synthesizing name spaces given 3-agent trust
specifications. Directed graphs are again used to represent the trust specifications. However, a
directed edge by itself can only represent a binary relationship between its two vertices. Thus,
in representing 3-agent trust relationships by a directed graph, two of the agents in the trust rela­
tionship become vertices, and the third agent becomes a label of the directed edge between the

vertices. Thus, a labeled directed edge is used to represent a 3-agent trust relationship.

4.7 .1. Iterative and Recursive Composition

As explained at the beginning of this chapter, a name space is specific to a channel com­

position order. When the channel composition order is iterative, we model the given trust rela­

tionships by a labeled directed graph called UT-graph 4. A LIT-graph contains an edge BC

labeled with a set of agents setsc if and only if for all agents A in set8 c we have TA (A, B, C)

= true in the given set of trust specifications (see Figure 4.20). Consider a name space that

satisfies the given set of trust specifications. If B is any node in the name space, and C is its
parent, the link B -C divides the set of all agents in the name space into two disjoint subsets
containing, (1) the descendents of B, e.g., N. and (2) the non-descendents of C, e.g., M, respec­
tively. By Theorem 4.1, for all descendents N of B, TA (N, B, C)= true, and hence N belongs

to setsc, and for all non-descendents M of C, TA (M, C, B) = true, and hence M belongs to

setcs . Since every node except B and C is either a descendent of B or a non-descendent of C ,

and since B and C trivially belong to set8 c and setcs, set8c u setcs =the universal set 5•

Thus, if in the LIT-graph for a given set of trust specifications set8 c u setc8 does not

equal the universal set, then C cannot be the parent of B .

Interchanging the roles of C and B , we obtain that, if setc8 u set8 c does not equal the

universal set, B cannot be the parent of C .

But, since set8 c u setc8 = setcs u setsc , if setcs u set8c does not equal the universal

set, the link B -C cannot exist in any name space synthesized for the given trust specifications,

and hence the edges BC and CB can be removed from the LIT-graph. These results are sum­
marized in the following theorem:

Theorem 4.11: Given 3-agent trust specifications, if iterative channel composition is used, a
link B -C can exist in the name space only if, in the LIT -graph constructed from the trust
specifications, the union of the labels of edges BC and CB equals the universal set. Moreover,
if C is the parent of B , an agent N that is a descendent of B in the name space must belong to

set8c, and an agent M that is a non-descendent of B in the name space must belong to setcs .

4 UI-graph stands for lAbeled Iterative Trust graph.

5 The symbol "U" is used to mean the union of sets.

0

70

When the channel composition order is recursive, we model the given trust relationships

by a labeled directed graph called LRT -graph. A LRT -graph contains an edge BC labeled

with a set of agents setsc if and only if, for all agents A in setsc TA (C, B, A) = true in the

given set of trust specifications (see Figure 4.21). Consider a name space that satisfies the given

set of trust specifications. If B is any node in the name space, and C its parent, the link B -C

divides the set of all agents in the name space into two disjoint subsets containing, (1) the des­

cendents of B, e.g., N, and (2) the non-descendents of B, e.g., M, respectively. By Theorem

4.2, for all descendents N of B, we have TA (C, B, N) =true, and hence N belongs to set8c;
also, for all non-descendents M of B , we have TA (B , C , M) = true , and hence M belongs to

setcs . Since every node is either a descendent or a non-descendent of a node, setsc u setcs =

the universal set. 6

Thus, if, in the LRT -graph for a given set of trust specifications, setsc u setcs does not

equal the universal set, C cannot be the parent of B .

Interchanging the roles of C and B, we obtain that, if setcs u setsc does not equal the

universal set, B cannot be the parent of C .

But, since set8 c u setcs = setcs u setsc , if setcs u setsc does not equal the universal

set, the link B -C cannot exist in any name space synthesized for the given trust specifications,

and hence the edges BC and CB can be removed from the LRT-graph. These results are sum­

marized in the following theorem:

Theorem 4.12: Given 3-agent trust specifications, if recursive channel composition is used, a

link B -C can exist in the name space only if, in the LRT-graph constructed from the trust

specifications, the union of the labels of edges BC and CB equals the universal set. Moreover,

if C is the parent of B , an agent N that is a descendent of B in the name space must belong to

SetBC
)'

Set
CB

BC/c B C

Set = (A:T(A,B,q=TRUE}
BC

SetBC

N

(set U set) must be the universal set

(a)
BC CB (b)

Figure 4.20: LIT -graph representation for the combination consisting of 3-agent trust

specifications plus iterative channel composition. (a) The LIT-graph contains an edge BC
labeled with set8c, where set8c is the set of all agents A such that TA (A, B, C) is true.

(b) The union ofset8c and setc8 must be the universal set.

71

set8c , and an agent M that is a non-descendent of B in the name space must belong to setc8 .

0

4.7 .2. Duality

It may be observed that Theorems 4.11 and 4.12 are identical except that the sets in
Theorem 4.11 are the labels in a LIT -graph whereas the sets in Theorem 4.12 are the labels in a
LRT-graph. The difference in the computations of labels in a LIT-graph and those in a LRT­
graph is that, in a LIT-graph, a label set8c contains the agents A such that TA (A, B, C)= true.

In a LRT-graph, a label set8c contains the agents A such that TA (C, B, A)= true. Thus, the
conditions for synthesizing name spaces for the cases of iterative and recursive channel compo­
sition are identical except for the fact that the last and the first arguments to the trust predicates
are interchanged. These results are summarized in the following theorem:

Theorem 4.13 (General Duality Theorem): Any algorithm that synthesizes name spaces from
LIT -graphs is also an algorithm for synthesizing name spaces from LRT -graphs, and vice versa.
Any algorithm that synthesizes name spaces for 3-agent trust specifications combined with
iterative channel composition becomes an algorithm for synthesizing name spaces for 3-agent
trust specifications combined with recursive channel composition if the roles of the first and the
last arguments to the trust specifications are interchanged, and vice versa.

B C

Set = {A: T(C, B, A)= TRUE)
BC

(a)

0

N

(set U set) must be the universal set
BC CB (b)

Figure 4.21: LRT-graph representation for 3-agent trust specifications combined with re­
cursive channel composition. (a) The LRT-graph contains an edge BC labeled with
set8c, where set8c is the set of all agents A such that TA (C, B, A) is true. (b) The union

of set8 c and setc8 must be the universal set.

72

As a consequence of Theorem 4.13, we can limit ourselves to developing name space syn­
thesis algorithms only for 3-agent trust specifications plus iterative channel composition.

4.8. Name Space Synthesis Given Three-Agent Trusts and Iterative Composition

This section gives an algorithm for synthesizing name spaces for 3-agent trust
specifications plus iterative channel composition. The algorithm takes a LIT -graph as input,
and outputs a name space satisfying the trust specifications represented by the LIT -graph, if
such a name space exists.

4.8.1. The Synthesis Algorithm

The algorithm employs a dynamic programming technique to synthesize the name space.
Since the algorithm is quite involved, for ease of understanding, we will describe it in a
bottom-up fashion with the help of an example.

Algorithm 4.3

Let us assume that there are n agents It, I 2, ..• , In to be named in the name space. It, I2,

... , In must occur as leaf nodes in the name space. Let us assume that, out of these n agents,
there are m agents i t• i2, ••• , im that can serve as name servers, i.e., as internal nodes in the
name space (see Figure 4.22). Whether an agent can serve as a name server or not is the choice
of the agent; hence m is detennined by the number of agents willing to serve as name servers.

There are at most n steps in the algorithm. At each step there are m trees, each tree
rooted at a different internal node.

Step 1: In the first step, m trees are constructed. Each tree has a different internal node as its
root and as many leaf nodes as possible as the children of the root A leaf node has no descen­
dents, and all nodes are its non-descendents. By Theorem 4.11, a leaf node IB can become a
child of an internal node ic if and only if the edge CB in the input LIT-graph is labeled by the
universal set (see Figure 4.23).

In the example, let I 1, 12 and 13 become the children of i 1, 14, 15 and 16 become the chil­
dren of i 2, 11, 18 and 19 become the children of i 3, and 110, 111 and 112 become the children of i 4

(see Figure 4.24).

This concludes step 1.

Let us assume we have carried out k steps, at the end of which there are m trees, t 1 k, t l,
... , tm k rooted at internal nodes i 1, i 2, ... , im, respectively (see Figure 4.25(a)). Let us further

assume that the algorithm does not meet any of the termination conditions to be presented later

11 1 2 1 2

Internal Nodes Leaf Nodes

Figure 4.22: Internal nodes and leaf nodes for name space design example

Set
CB

Set must be the universal set
CB

1
Figure 4.23: Node 18 becomes a child of ic if and only if setc8 is the universal set

. .
11 12 13 14

~ ~ ~ ~
Il I2 I3 I4 Is I6 I7 Is I9 110 In 112

Figure 4.24: Trees at the end of step 1 of Algorithm 4.3 for the example

73

in this section. (For clarity and ease of understanding, the termination conditions are presented
at the end of the description of the k + 1 th step.) The (k + 1 ih step of the algorithm is carried out
as follows.

Step k+l: We construct m trees t 1.t+l, rl+1, ••• , tm .t+l in m substeps substep (t/+1),

substep (tl+1), ••• , substep Ctm k+l), respectively (see Figure 4.25(b)). Each of these substeps
starts from the end of step k , and hence they can all be carried out in parallel. We will describe
substep (t 1k+l), which consists of constructing t 1k+1; the other substeps are very similar.

Substep(tr1): Tree t 1 (k+l) rooted at i 1 is constructed by attaching each oft/, tl, ... , tm k as a
subtree of t 1.t, directly under t 1.t 's root i 1. Effectively, we are proposing the m-1 new indepen­
dent channels i 1-i 2, i 1-i 3, .•. ,and i 1-im (see Figure 4.25(b-1)). The procedure for attaching t/
to tf as a subtree is called attachment(tf, t~). and is described next. The procedures
attachment(tf, t~) • ... attachment(tf, t!) for attaching tl, ... , tm k respectively to t 1k are very
similar, and can be obtained by modifying in the obvious way the one to be described.

Attachment(tf, tf): When tj is attached as a subtree of tf, root i 2 oft~ becomes a child of
root i 1 of tf. The nodes in t 1 and t~ must now satisfy the trust relationships represented by the
input LIT-graph. The following tests check if the nodes satisfy the required trust relationships,
and eliminate the nodes that do not (see Figure 4.26):

(Tl): Each node in t~ is a descendent of i 2. By Theorem 4.11, each node in t1 must
belong to set 21 in the input LIT -graph. Nodes that do not satisfy this condition must be

74

(a)
• • •

t~

(b)

• •

t~

(b-2)

• •

(b-m)

•

t~ k
t m-2

k
t m-1

Figure 4.25: Illustration of step k+l of the name space design algorithm. (a) Trees at the
end of ste~ k. (b) Step k+l consists of substeps substep (t 1k+l), substep (tl+1), ••. ,

substep Um +1
). Each of these substeps starts from (a), and hence they can all be carried

out in parallel. (b-1) Substep(t 1k+l), consisting of attachments attachment(tt, t~) • ...

attachment(tt, r!) that attach all other trees to t1, (b-2) Substep(t 2k+l), consisting of at­
tachments attachment (t~, tf), ... attachment (t~ , t!) that attach all other trees to t~,

deleted from t~. The deletion of a node from a tree is described by Algorithm 4.4 in the

-I

75

next section. and may not always be ~ssible. Thus, if a node in t~ that does not belong
to set21 cannot be deleted from ti, tt cannot be attached as a subtree of tf, tests T2 and
T3 are skipped, and attachment(t 1 , t 2) terminates.

(T2): After test Tl, each node that is not in t~ will be a non-descendent of i 2 in the final
tree, and, by Theorem 4.11, such a node must belong to set 12. If this is not satisfied, t~
cannot be attached as a subtree of tf, test T3 is skipped, and attachment (tf, t~) ter­
minates.

(T3): After tests Tl and 1'2, if a leaf node lD occurs in both tf and t~, one of the two
duplicates of lD must be eliminated (see Figure 4.26). If lD e set21 , deletion of lD from tf
becomes permissible if the node deletion algorithm, Algorithm 4.4 returns success. If lD e
set 12, deletion of lD from t~ becomes permissible if Algorithm 4.4 returns success. If
deletion of lD from either tf or t~ becomes permissible, the choice of the tree from which
it is to be deleted can be made arbitrarily. That this choice will have no effect on subse­
quent attachments is shown in Section 4.8.3. If, on the other hand, the deletion of l'l from
either t~ or tf is not permissible, t~ cannot be attached as a subtree of t 1 , and
attachment(tf, t~) terminates.

After attachment (tf , t~), the succeeding attachments are, in order:

attachment(tf, t~) • ... , attachment(tf, t,!).

The sequence:

{attachment(tf, t1) • ... , attachment(tf, t,!)}

forms substep(tf+1
) (see subfigure b-1 of Figure 4.25).

The sequence:

Figure 4.26: Attachment(tf, t~) during step k + 1

{substep(t~+l), substep(t~+I), ... , substep(t!+1)}

f01ms step k+ 1 (see Figure 4.25).

76

The algorithm terminates at the end of the k + 11
h step if any of the following conditions

are satisfied:

(1) At least one of t 1A:+l, tl+1, ••• , tm A:+ I contains all the leaf nodes 11> 12, ..• , 1". One of

t 1k+l, t2k+I, ... , tm k+t that has all the leaf nodes is output as the name space.

(2) k+l k+l k+l "d . al k k k . 1 In thi furth
t 1 , t 2 , ••• , tm are 1 ennc to t 1 , t 2 , .•• , tm respecnve y. s case, er

steps will not yield any new trees, and no name space exists.

This concludes step k+l of Algorithm 4.3. If none of the termination conditions are satisfied,

the algorithm proceeds to step k+2, without regard for the value of k. However, in Theorem

4.16, we will show that there can be at most m steps in the Algorithm.

0

4.8.2. Leaf Node Deletion Algorithm

Nodes that do not satisfy tests Tl, T2 or T3 during an attachment must be deleted from

their respective trees. In this section, we present the algorithm for deleting a node from a tree.

Note that the deletion of a node from a tree is not always possible.
Algorithm 4.4

Consider an attachment such as attachment(t~, t~). in which a leaf node such as 10 is to

be deleted from t~ (see Figure 4.26). When 10 is in t~, 10 is a descendent of all the nodes that

are in the path from the root i 2 of t~ to 10 and a non-descendent of all other nodes in t~. For

each link C -8 in the path from i 2 to 1~, 10 is a descendent of 8 , and hence, by Theorem 4.11,

10 e set8c. When 10 is deleted from t 2 , 10 becomes a non-descendent of all nodes in t~; 10 is

then a non-descendent of 8 (see Figure 4.27), and hence by Theorem 4.11, 10 e setc8 . Thus, it

is permissible to delete 10 from t ~ only if, for all links C -8 in the path from the root i 2 to 10 ,

10 e setc8 •

This completes the description of Algorithm 4.4.

0

To further visualize the effect of deletion (see Figure 4.27), notice that, when !0 is in t~,

for each link C -8 in the path from root i 2 to 10 , 10 reaches ic through i8 , and hence TA (10 ,

i8 , ic) is true. When 10 is deleted from t~, it has to reach i8 through ic, and hence TA (10 , ic,

i8) must be true. Recall that deletion is only to be done when there are duplications. Thus,

deletion of 10 from t~ will not cause the disappearance of /0 from the global forest at level k.

4.8.3. Independence Properties of Duplicate Elimination in Algorithm 4.3

Test T3 in an attachment performs deletion of duplicate nodes. If the deletion of a dupli­

cate node from either of the trees involved in an attachment is permissible, a question may arise

as to whether the choice will have any effect on subsequent attachments. Suppose that the

choice does have an effect. In order to find a name space if one exists, Algorithm 4.3 would

have to exhaust the entire choice space, and hence would have to backtrack if it fails to find a

name space tree. Consequently, Algorithm 4.3 would become very cumbersome.

77

A-----···· 12 [\ ---···-···

~~~ I• 

(a) (b) 

Figure 4.27: Effect of deleting node 10 from tree t~+1 . For each link C -B in the path 

from the root i 2 to 10 , (a) prior to deletion when 10 is in t~+1 , 10 is a descendent of is, 

and (b) after deletion, 10 is a non-descendent of is. 

Fortunately, the following theorem proves that the choice of the duplicate for deletion will 

have no effect whatsoever on subsequent attachments, and thus Algorithm 4.3 does not have to 

backtrack. 

Theorem 4.14: Suppose that in an attachment, say attachment (t;, tt">, 10 occurs as a duplicate, 

and the deletion of 10 from either t; or t# is permissible, choosing either t: or t# for deleting 10 

will have no effect on subsequent attachments and hence the choice between them can be arbi­

trary. 

Proof: To maintain uniformity of description with Algorithms 4.3 and 4.4, we will consider 

attachment 1 = attachment(tf, t~) for the purposes of the proof. The same proof holds for any 

other attachment. 

Let choice 1 denote the deletion of 10 from tf, and choice 2 denote the deletion of 10 from 

t~ . Choice 1 requires that the deletion of 10 from t1 be permissible in Algorithm 4.4. Hence 

choice 1 requires that the following condition be satisfied (see Figure 4.28): 

(Sl): For each link F-E in the path from i 1 to 10 , 10 e set FE 

Choice 2 requires that the deletion of 10 from t~ be permissible in Algorithm 4.4. Hence 

choice 2 requires that the following condition be satisfied (see Figure 4.29): 

(82): For each link C -B in the path from i 2 to 10 , 10 e setcs 

Consider the subsequent attachment, namely, attachment2 = attachment(tf, t~). Notice that, if 

10 does not occur in t~, the deletion of 10 in attachment 1 has no effect on attachment 2. Hence 

making choice 1 or choice 2 has no effect on attachment 2• 

Suppose that 10 does occur in t~. 10 must be deleted during attachment2. The only effect 

that choice 1 or choice 2 could possibly have on attachment2 is on the deletion of lo during 

attachment 2. There are two possibilities for the deletion of 10 during attachment 2: 



- 1 

78 

11 

------------------------------------... _i 2 

122 

This 1o is deleted 

Figure 4.28: Choice 1: During attachment of tl" to tt't, duplicate lv is deleted from tl". 

11 

··········-··-----------------------------------------... _______ i 2 

122 

This 1 D is deleted 

Figure 4.29: Choice 2: During attachment of tl to t 1k, duplicate lv is deleted from t 1k. 

(Pl): Deletion of lv from t~, or 



79 

(P2): Deletion of 10 from t~ or t1 depending on whether attachment2 was preceded by 
choice 1 or choice 2, respectively. 

Consider the possibility Pl. If choice 1 was taken during attachment 1, deletion of 10 from t~ 
during attachment 2 is permissible in Algorithm 4.4 if (see Figure 4.30): 

(S3): For each link H -G in the path from i 3 to 10 • 10 E set no 

If choice2 had been taken during attachmentt> deletion of 10 from t~ during attachment2 is per­
missible in Algorithm 4.4 if (see Figure 4.31): 

(S4): For each link H -G in the path from i 3 to 10 , 10 E set no 

Conditions S3 and S4 are identical. Thus, for possibility P1 during attachment2, making 
choice 1 or choice 2 during attachment 1 has no effect on attachment 2• 

Now consider possibility P2. Suppose that choice 1 was taken during attachment 1• Dele­
tion of /0 from t~ during attachment2 is pennissible in Algorithm 4.4 if (see Figure 4.30): 

(SS): For each link C -B in the path from i 2 to 10 , 10 E setcs 

Suppose that choice 2 was taken during attachment 1• Deletion of 10 from tf during attach­
ment2 is pennissible in Algorithm 4.4 if (see Figure 4.31): 

(S6): For each link F-E in the path from i 1 to 10 , 10 E set FE 

There is a difference in conditions S5 and S6. Suppose that S5 is satisfied. Choice 1 must have 
been taken during attachment 1, and hence S 1 must be satisfied. But S 1 is identical to S6, and 
hence S6 is satisfied. Thus, S5 => S6. 

Suppose that S6 is satisfied. Choice 2 must have been taken during attachment 1, and 

........... --··--·-·-····--·-·-··-··-···-··---·--······-·-·-········-··-.. i 

~1 
122 

1
0 

occuring as a duplicate 

Figure 4.30: Attachment2 after choice 1: 10 occurs as duplicates in t2k and tl. 





81 

Base step: Let k = 1 in the induction hypothesis. For each x andy, Algorithm 4.3 adds a leaf 
node ly as a child of i:~ only if set'J% is the universal set Since ly is a leaf node and all other 
nodes are its non-descendents, by Theorem 4.11 the link (, -ly satisfies the given trust relation­
ships. As this is true for all x and y , all the trees satisfy the given trust relationships. Since 
Algorithm 4.3 tries to add each leaf node to each internal node, each tree contains all the leaf 
nodes that can possibly be at a distance 1 from the root of the tree. This completes the proof of 
the base step. 

Induction step: Let us assume that the induction hypothesis is true fork. We have to show that 
the hypothesis is true for k+l. We will give the proof for x = 1 in the hypothesis. The same 
proof holds for all other values of x. 

Consider t~, the tree rooted at i 1 at the end of step k. In each of the attachments (tf, t~). 
(tf, t~ ), ... , (tf, t!). tests T1 and T2 are direct applications of Theorem 4.11. Hence, they elim­
inate all the nodes that do not satisfy the required trust relationships, and tf+1 satisfies the given 
trust relationships. This proves the first part of the induction hypothesis. 

Since the induction hypothesis is assumed to be true for k, tf contains all the leaf nodes 
that can possibly be at a distance not exceeding k from i 1• Now consider a leaf node t~ that can 
possibly be at a distance not exceeding k + 1 in a tree rooted at i 1• t~ has to be either at a dis­
tance not exceeding k or at a distance of k + 1. If lx is at a distance not exceeding k, it must be 
present in t~, and hence it will be present in tf+1 . If lx is at a distance of k+1 from i 1, it must 
be at a distance k from some child i 2 of i 1• By the induction hypothesis the tree t~ at step k 
contains all nodes that can possibly be at a distance not exceeding k, and hence contains lx. 
During attachment(tf, t~) of step k+1, Algorithm 4.3 attaches t~ as a subtree of tf, and, when 
node deletions are independent, lx becomes part of tf+1 at a distance of k+1 from the root. 
Thus, tf+1 contains all the leaf nodes that can possibly be at a distance k+l or less from i 1• 

This completes the proof of the induction step and of Theorem 4.15. 

In a name space, the path from the root to a leaf node cannot contain duplicate internal 
nodes. This is because, if a path contains duplicate internal nodes, the part of the path between 
the duplicate nodes together with one of the duplicate nodes can be removed from the path. For 
example, suppose that a path contains the sequence i 1, i 2, .•• , ix, and i 1, in which there is a 
duplication of i 1• The nodes i 1o i 2, ... , ix can be deleted from the path, eliminating the duplica­
tion. Thus, in a name space, the path from the root to any leaf can contain at most all the m 
internal nodes (including the root). Therefore, each leaf node must be at a distance m or less 
from the root But notice that, when k = m, the induction hypothesis that we proved above 
becomes the theorem itself, and hence each tree at step m contains all the leaf nodes that can 
possibly be at a distance m or less from the root. Thus, if a name space exists, there will be a 
tree containing all agents as leaf nodes at the end of step m of Algorithm 4.3. Hence, Algo­
rithm 4.3 synthesizes a name space if one exists. 

This completes the proofofTheorem 4.15. 

D 

4.8.5. Complexity of Algorithm 4.3 

At stepS of Algorithm 4.3, to each tree all the nodes that can possibly be at distance not 
exceeding S from the root of the tree are added to the tree. Since there are at most m internal 
nodes, a leaf node can at most be at a distance of m from the root of the name space. Thus, 
Algorithm 4.3 synthesizes a name space if one exists in at most m steps, and hence there are at 

-I 



82 

most m steps in Algorithm 4.3. 

Each step of the algorithm consists of m substeps. Each substep consists of m -1 attach­
ments. Thus, at each step there are O(m2) attachments, and there are at most O(m 3) attach­

ments in the algorithm. 

In each attachment, tests T1, T2 and T3 are executed once for each leaf node in the tree 

being attached, and hence they are executed at most n times. T1 and T3 each consist of node 
deletion, and each deletion involves testing O(n) trust relationships and hence takes O(n) time. 

T2 consists of checking one trust relationship per leaf node and hence takes O(n) time. Thus 

each attachment takes O(n 2) time at worst. These results are summarized in the following 

theorem: 

Theorem 4.16: If m is the number of internal nodes and n the number of leaf nodes, there can 

be at most m steps in Algorithm 4.3, and the worst case complexity of Algorithm 4.3 is 

O(m3n2). 

0 

When O(m) = O(n), by Theorem 4.16, the worst case complexity of Algorithm 4.3 is 

O(n\ 

Theorem 4.9, together with the obsetvation that the problem of designing a name space 

given 3-agent trust specifications is the general case of which the problems of designing a name 
space given 2-agent trust specifications are special cases, yields that putting an upper bound on 

the children of each node in the name space for 3-agent trust specifications is NP-complete. 

This is summarized in the following theorem: 

Theorem 4.17: Given 3-agent trust specifications and either iterative or recursive channel com­

position, the problem of designing a name space with an upper bound on the number of children 

of each node is NP-complete. 
0 

4.9. An Example 

The name space design algorithms described in this chapter have been implemented and 

experimented with. Figure 4.32 shows the name space synthesized by Algorithm 4.3 from a 
sample set of trust specifications. The trust specifications are enumerated in Appendix 1. Only 

the internal nodes of the name space are shown: each node is assumed to have leaf nodes 
corresponding to the employees of the organization labeling the node. 

The trust specifications were then changed and the name space was reconstructed using 

Algorithm 1. The changes in trust specifications were that, the trust relationships in which 

agents trust ibm for ibm-j and vice-versa were replaced by trust relationships in which agents 
trust ibm for sony-usa and vice-versa. Figure 4.33 shows the reconstructed name space. 

The two name spaces are quite different, even though the difference in their trust 

specifications is not significant Thus, small changes in trust relationships can cause substantial 

differences in the name space configuration. This shows that trust relationships can have 
significant effects on the structure of a name space. Name space design that takes into account 

such non-trivial effects is too complicated to be carried out by manual trial-and-error methods 
for a large distributed system. Thus, the algorithms described in this chapter are useful for 

designing real distributed systems. 



83 

Figure 4.32: Name space for a sample set of trust specifications 

Figure 4.33: Name space reconstructed after slightly changing the sample set of trust 
specifications. 

4.10. Conclusion 

In a distributed system, it is desirable to have a tree of independent channels. A tree of 
independent channels also represents a global name space. There are two channel composition 
orders, namely, iterative and recursive. Iterative and recursive channel compositions require 
different trusts and are duals of each other. As one of the most important applications of a for­
mal theory of trust, we have developed polynomial-time algorithms for synthesizing name 
spaces so that, given a channel composition order and the trust relationships of agents, channel 
composition between any two agents requires only a subset of the given set of trust relation­
ships. The trust relationships are in general functions of three agents, but can also be functions 
of two agents, in which case the algorithms are simpler. Each node in the name space has to 
store the database of public keys of its children, and hence it is desirable to put an upper bound 

-I 



84 

on the size of this database. However, this problem is NP-complete. Sample runs of the name 

space design algorithms show that small differences in trust relationships can cause substantial 

differences in name spaces, thus demonstrating that trust relationships can have a significant 

effect on the structure of a name space. Design of a name space that takes into account the 

non-trivial effects of trust relationships is too complicated to be done by manual trial-and-error 

methods for a real distributed system (especially a VLDS), from which we can infer the practi­

cal utility ofthe algorithms described in this chapter. 

-I 



CHAPTER 5 

TRADING TRUST REQUIREMENTS FOR PERFORMANCE 

No synthesis is complete without perfonnance considerations. Under some conditions, to 
improve perfonnance of channel establishment mechanisms, we may accept to increase their 
trust requirements. If channel composition is PKE-based, slightly increasing the trust require­
ments allows agent-to-agent channels to be built on top of host-to-host channels. Only the 
host-to-host channels need be established over the network, and this approach can greatly 
increase the perfonnance of agent-to-agent secure communication with respect to that of estab­
lishing agent-to-agent channels directly. The accompanying increase in trust requirements is 
still always a subset of the set of trust specifications from which the system's name space has 
been synthesized. However, if channel composition is SKE-based, this approach requires glo­
bal trusts, which may not be satisfied in the name space. The protocol for establishing host-to­
host channels can be handled at the subtransport level of the network protocol hierarchy. A pro­
totype of the subtransport-level channel establishment protocol has been implemented on Sun 
3/50 workstations connected by a 10 Mb/s Ethernet Experimental measurements confinn that 
both the average latency of messages and the maximum throughput improve substantially when, 
instead of establishing agent-to-agent channels directly, host-to-host channels are established, 
and agent-to-agent channels are built on top of host-to-host channels. These improvements are 
primarily due both to the sharp decrease in the number of channel establishment operations 
across the network and to piggybacking of messages from several agent-to-agent channels on to 
a single host-to-host channel message. 

5.1. Introduction 

In Chapter 3, protocols for PKE- and SKE-based channel composition were analyzed for 
their trust requirements, and it was shown that PKE-based channel composition has much 
smaller trust requirements. In the previous chapter, we showed how to construct PKE-based 
name spaces given the trust relationships of all the agents sharing the distributed system. When 
a new channel, say channel(Ai, Ak), is established using a PKE-based name space, Ai obtains 
the public key of Ak. Authentication of a message from Ak to Ai on channel(Ai, Ak) is pro­
vided by encrypting the message with Ak 's private key. Privacy of a message from Ai to Ak on 
channel(Ai, AA) is provided by encrypting the message with Ak 's public key. 

However, public key encryption is expensive [Koc,NBS77]. An alternative way would be 
for Ai and Ak to agree upon a single key Sik using the first few messages on channel(Ai, Ak)• 

and then use Su, as the key of channel(Ai, Ak) [Dif82, PoK79]. Authentication of a message 
from Ak to Ai on channel(Ai, A,t) would in this case be provided by a cryptographic checksum 
computed using Sik. Privacy of a message from Ai to Ak on channel(Ai, Ak) is provided by 
encrypting the message with Sik. This bootstrapped PKE-based channel composition protocol 
combines the advantages of PKE and SKE schemes, i.e., it has the efficiency of the SKE 
scheme while having the smaller trust requirements of the PKE scheme. 

The bootstrapped PKE-based protocol, even though it is much more efficient than a pure 
PKE-based protocol, has significant perfonnance disadvantages with respect to protocols 
without security mechanisms. Suppose that there are agents Ai 1 and Ai 2 on a host H A , and there 

85 



86 

are agents Au and At2 on a second host H 8 
1• If each agent on HA communicates with each 

agent on Hs and vice versa, eight channels (four bidirectional channels) have to be established. 
Thus, the number of channels to be established in the worst case grows quadratically with the 
number of agents on the two hosts (see Figure 5.1). Each channel establishment involves agree­
ing upon a single key, and each agreement requires a three-way handshake protocol. The cost 
of such a channel establishment mechanism can become sufficiently prohibitive so as to dis­
suade agents from using secure communication channels entirely. 

The goal of this chapter is to investigate whether trust relationships can be traded for per­
formance; in particular we want to design a protocol with substantially improved performance 
but with slightly higher trust requirements. We will show how, in a PKE-based name space, by 
only slightly increasing the trust requirements, the perfonnance can be greatly improved, while 
the increased trust requirements still form a subset of the set of trust specifications from which 
the name space has been synthesized. We will also show how, in an SKE-based name space, 
the requisite increase in trust requirements is so unacceptable as not to permit any practical 
increase in perfonnance. 

The performance disadvantages of pure/bootstrapped PKE-based channel establishment 
protocols stem from the fact that, for each pair of communicating agents on two hosts, a 

Host A HostB 

e\ s e 

~ ......................................................... --·------............................ -... ------. ---- .. ----.................................. ---.... ----................................................................ ·---- ... ! . . 
~------ .................................. -----....................................... -- .. -.................... --.................... ----....... --- .................................... -- .... ---- ....... ---- ................................................... ... 

Figure 5.1: Multiple user-to-user channels 

1 When we say an agent is on a host, we mean that a process belonging to the agent is on the host. Similarly, an 
agent-to-agent channel between two agents means a process-to-process channel between two processes belonging to 
the two agents. 



,. 

87 

separate channel must be established across the network. To increase the performance, we must 
reduce the number of channels established across the network. In this chapter we present a 

channel establishment protocol called Authenticated Datagram Protocol (ADP) 2, which estab­
lishes just one host-to-host channel across the network between any two hosts, and builds 
agent-to-agent channels on top of these host-to-host channels. 

The reduction in the number of channels that are established across the network in ADP 
comes with an accompanying increase in trust requirements. This increase in trust requirements 
consists of trust relationships involving hosts on which agents have processes. In order effec­
tively to describe these trust relationships involving hosts and agents, we present a high level 
model of process execution in Section 5.2. In Section 5.3 we describe ADP, and in Section 5.4 
we derive ADP's trust requirements, and show how they are noticeably higher than those of a 
pure PKE-based channel establishment protocol. We then introduce some modifications to 
ADP that substantially reduce its trust requirements without affecting its performance. With 
these modifications, ADP's trust requirements become only slightly higher than those of a pure 
PKE-based channel establishment protocol. Moreover, the increased trust requirements still 
form a subset of the set of trust specifications from which the name space has been synthesized. 
In Section 5.5, we show that, if an SKE-based name space is used, building agent-to-agent 
channels upon host-to-host channels (as in ADP) results in global trust requirements which may 
not be satisfied in the name space. Section 5.6 defines the concept of a trust domain, and shows 
how it can be used further to increase the performance of ADP. Section 5.7 details the advan­
tages of ADP over directly establishing agent-to-agent channels across the network, and Section 
5.8 presents results of experimental measurements of a prototype of ADP that confirm its 
expected performance benefits. Finally, Section 5.9 concludes the chapter. 

5.2. A Model of Process Execution on Hosts 

Each host has a kernel running on it At any point in time, each host has an agent that is 
the host's owner. Host ownership is established at boot time, before network communication 
takes place; it might be done manually or from a ROM. Usually, the agent who boots the kernel 
on the host becomes the host owner. Host ownership may change over time, e.g., as different 
people boot a public workstation. Each host has a (public-key, private-key) pair associated with 
it, which is the (public-key, private-key) pair of the host owner. The trust relationships of a host 
are those of its owner. A crash-free period under a single host owner is called a kernel session. 
In the sequel, we shall use the terms "host" and "kernel" interchangeably. We shall also use 
the terms "agent", "user" and "owner" synonymously. 

The host may support multiple user processes, each of which has an agent as its owner, 
perhaps different from the host owner. Processes communicate with each other through mes­
sages. Each message has a message sender field containing the name of the owner of the send­
ing process, and a message receiver field containing destination information. A kernel has 
access to the private keys of the host owner and of the owners of all the user processes it has 
executed or is executing. 

A kernel must satisfy some correctness requirements with regard to security. There has 
been substantial formal work in the area of kernel security correctness [CGH8l,Lan8l,Sal74]. 
Without going into formal descriptions of secure kernels, for the purposes of discussing how 

2 The protocol is so named because it provides message authenticity for all messages, and assumes the ex­
istence of an underlying network protocol that provides at least a host-to-host datagram service. 

-I 



88 

ADP might fit inside a secure kernel, we will give an intuitive set of conditions that a secure 
kernel must satisfy. 

Figure 5.2 represents our model for the organization of the kernel. It consists of modules 
of code and private data. The passing of messages between modules is handled by a special ker­
nel module called the message passing module. The channel establishment functions are han­
dled by a module called the security module. Kernel modules which handle either an outgoing 
message before it is passed to the security module or an incoming message after it has been pro­
cessed by the security module are called type-1 modules. Protocol modules above the layer at 
which channel establishment mechanisms are handled are examples of type-1 modules. Kernel 
modules which handle either an outgoing message after it has been processed by the security 
module or an incoming message before it has been processed by the security module are called 
type-2 modules. In a protocol architecture where channel establishment mechanisms are handled 
above the data link layer, a network driver is an example of a type-2 module. Kernel modules 
other than the security module, the message passing module, the type-1 modules, and the type-2 
modules are called type-3 modules. The private keys are part of the private data storage of the 
security module. The security module, the message passing module, the type-1 modules, and 
the type-2 modules are together called critical modules. 

A kernel is security-co"ect if the following conditions hold: 

(1) The only way for a user process to communicate with the kernel is through messages. 

(2) When a user process sends a message to a kernel module, the message passing module 
sets the message sender field to be the owner of that process. Thereafter, the message 
passing module and the type-1 modules do not change (a) the message sender field, or (b) 

the message receiver field, (c) the data part of the message. 

User 

Message Passing Module 

Type-1 Modules 
Type-3 Kernel 

Security Module 
Modules 

Type-2 Modules 

Figure 5.2: Kernel module structure 



89 

(3) The message passing module does not deliver a message to a user process if the owner 
of that user process is different from that indicated in the message receiver field. 

(4) The private data storage of the security module is read or written by no other module. 

(5) The security module executes its algorithms (to be given later) correctly. 

(6) Type-2 modules do not directly communicate with type-1 or type-3 modules or user 
processes. 

These conditions were obtained from intuitive notions of what a non-malicious kernel should 
provide with respect to secure communication between user processes. 

When an agent Ai executes a process on a security-correct host HA, there are some impli­
cations for A; 's trust relationships. Since Ai 's private key is accessible to HA, HA is assumed 
not to use the private key to masquerade as A; or reveal secret messages sent to A;, and is 
assumed not to reveal the private key. Thus, a trust relationship that guarantees the following 
three conditions is required betweenAi and the owner of HA: 

For each agent Ax (x *i ), 

(1) When Ax receives a message encrypted with Ai 's private key, the message was not 
sent by HA masquerading as A;. 

(2) When Ax sends a secret message encrypted with Ai 's public key, host HA, which can 
decrypt this message with Ai 's private key, does not reveal the secret message. 

(3) H A does not reveal Ai 's private key to Ax. 

If A i denotes the owner of H A , the above trust relationship between A; and A i can be formally 
expressed using the key user-possessor trust defined in Chapter 3. The first aspect of the trust is 
expressed by message privacy trust, the second by trust against masquerading and the third by 
key privacy trust. The three together form key user-possessor trust, which with universal 
quantification over Ax defines the Universal Trust: 

Tu(A1, AJ) (Universal Trust): Tu(A;,Aj) is true if and only ifV Ax x'*i, TKup(Ax, Aj, A;)= 

true.3 

T u (A; , A i) is required to be true whenever a host owned by A i has access to Ai 's private 
key, and vice versa. 

Universal trust is transitive, as shown by the following theorem: 

Theorem 5.1 (Transitivity Theorem): For all agents Ai, A i and Ak, if T u (Ai, A i) = true and 

Tu(Ai, Ak) =true, then Tu(Ai, Ak) =true. 

Proof: The proof is fairly simple. 

Since T u(Ai, A1) =true, a host H1 owned by A1 has access to Ai 's private key in H1 's 

storage. (5.1) 

Since T u(A1, Ak) =true, a host Hk owned by Ak has access to A1 's private key. With A1 's 

private key in its possession, Hk has access to all of H1 's storage. (5.2) 

3 TfCup(A,., Aj. A;) is trivially true for x=j. 



90 

By (5.1) and (5.2), H1c has access to A; 's private key. Thus Tu(A;, A~c) must be true. 

0 

If we view the universal trust as a binary relation on agents, we can define a set of agents, 
denoted by key-closure, as the following union of transitive closures of the universal trust 

key-closure(Aj): Union of the transitive closures ofT u (A;, Ay) for allAy. 

Key-closure(A;) will contain the owners of all hosts that have access to A; 's private key. 

5.3. The Authenticated Datagram Protocol 

ADP [AnV87] is a host-to-host channel establishment protocol, and hence is handled at 
the subtransport level of a network protocol hierarchy [AFV87c]. ADP has been designed and 
implemented [AFV87b] as part of DASH, an experimental distributed operating system 
[AFV87a] being designed at the University of California at Berkeley. 

DASH is an open system in which many transport-level protocols [Tan81, Tan88], both 
stream-oriented and request/reply, may exist. The clients of ADP are kernel-level transport pro­
tocol modules, and ADP in turn is a client of multiple network-level services that provide at 
least a host-to-host datagram service [Tan81, Tan88] (see Figure 5.3). 

ADP maintains two kinds of channels, host-to-host channels and agent-to-agent channels, 
with the latter being built on top of the former. Host-to-host channels are also called ADP 

channels. A summary description of ADP's operation, as it would be carried out between two 
hosts H A and H 8 , is as follows. The two hosts establish an ADP channel using a bootstrapped 
PKE-based channel composition protocol. No agent-specific channels are established across the 
network - all user messages between H A and H 8 are sent on the ADP channel between them. 
This reduces the worst case channel establishment overhead from being a quadratic function of 
the number of users to being a constant factor. HA and H8 build agent-to-agent channels upon 
their ADP channel by sending to each other the PKE-based certificates [Ak183, Den84b] 

TRANSPORT TRANSPORT 

ADP ADP 

NETWORK NETWORK 

DATA LINK 
PHYSICAL .MEDIUM 

DATA LINK 

PHYSICAL ..J PHYSICAL 

Figure 5.3: Position of ADP in the ISO/OSI model of network architecture 



91 

(described below) of their respective users. The two hosts cache the PKE-based certificates sent 
and received, thereby reducing the overhead of building agent-to-agent channels over their ADP 

channel. 

5.3.1. ADP Channels 

ADP establishes an ADP channel between two hosts HA and H8 when they communicate 

for the first time, and thereafter the channel continues to exist until one of the hosts fails. The 
protocol for channel establishment consists of the following steps (see Figures 5.4 and 5.5): 

(1) HA sends anADP channel request message to H8 • This message contains two random 
strings S and T. S is encrypted with H8 's public key for privacy. T may be sent in clear­

text. The entire message is cryptographically checksummed with HA 's private key for 
authenticity [Akl, Den84a]. S will be used as the single key of the ADP channel between 
H A and H 8 , and T will be used for certificates from H 8 to H A . 

(2) H8 sends an ADP channel acknowledgement message containing a random string R to 

be used for certificates from H A to H 8 • The first certificate sent from H A to H 8 serves to 
complete a three-way handshake for the ADP channel establishment. If both H A and H 8 

simultaneously try to establish an ADP channel to each other, the host with the lexico­
graphically greater name detennines the channel key S. 

In Section 5.4, we derive the trust requirements necessary if this protocol is to result in the 
establishment of a host-to-host channel H A -H 8 , i.e., channel(H A , H 8 ) and channel(H 8 , H A). 

5.3.2. Sending Certificates of Agents 

If Ak is an agent, we say that Ak is certified from H8 to HA if H8 sends the string {H8 , 

R } , which is a concatenation of the name H 8 and the random number R specified by H A , 

encrypted with Ak 's private key on the ADP channel between HA and H8 (see Figure 5.6). 
When HA receives the certificate, HA decrypts it with Ak 's public key, and compares the result 
with {H8 , R }. In Section 5.4, we derive the trust requirements necessary if the certification of 
Ak from H8 to HA is to result in the establishment of channel(Ax, Ak), for all agents Ax having 

processes on H A • 

The sending of Ak 's certificate from H8 to HA is nonnally done only once on an ADP 
channel. HA and H8 both maintain identical tables of agents that have been certified from H8 

to HA, and separate tables for agents certified in the reverse direction (see Figure 5.7). This 
caching of certificates means that expensive PKE-based encryption is done only once per agent 
per host per ADP channel. 

5.3.3. Messages on an ADP Channel 

Three levels of messages must be distinguished (Figure 5.2): 

Client messages are the messages read or written by clients of ADP. 

ADP messages are a logical unit of exchange between ADP instances on different hosts. An 

ADP message consists of a header followed by one or more items, each of which may be 1) a 
client message; 2) an agent's certificate or a request for an agent's certificate; 3) a request to 

establish a ADP channel, or the acknowledgement of such of a request; 4) a request to change 
the key of a ADP channel. 

Network messages: the network facility underlying ADP is assumed to provide an insecure and 
unreliable datagram service. If the size of an ADP message exceeds the maximum size allowed 

by the network layer beneath ADP, ADP divides the ADP message into multiple network 



92 

Host A HostB 

user user 

kernel kernel 
·-------------------------------------------------------------- ------------ ------------------------------------------------ ------

ADP ADP 

Figure 5.4: Hosts HA and H8 just before establishing an ADP channel 

Host A HostB 

user 8 0 user 

kernel kernel 
------------------------------------------------------------------ ------------------------------- ----------------------------------

ADP ADP 
( ) ( ) 

msg-1 
-------)> 

msg-2 
<(-------

Figure 5.5: Establishment of an ADP channel between HA and H8 . HA sends the channel 
request ms g 1 consisting of the doubly encrypted channel key S (encrypted first with H A 's 
private key and then with H8 's public key) and a random number T. H8 sends the chan­
nel reply msg 2, consisting of a random number R. 



93 

Host A HostB 

user ® E) user 

kernel kernel 
·-···---···············-·······················-····-··········- ················-················-······-····-······-···········--

I 
Ak r- Local authenncated 

agents 

ADP { ) () ADP 

~emote ~ au enncated --j> Ak 
agents 

msg-3 <{-------
Figure 5.6: Certification of agent A.t from H8 to HA. H8 sends a certificate msg 3 consist­
ing of the string {H8 , T} encrypted withA.t 's private key. 

messages. 

5.3.4. The ADP Client Interface 

Message addressing is done on the basis of network-dependent host addresses and, on a 
particular host, multiple ports. Ports have identifiers (port ID's) that are guaranteed to be 
unique on a given host between crashes. ADP clients infonn ADP that messages can be 
delivered to the given port using 

register_port( 
port_ID port, //the port being registered 
char *local_agent, // agent associated with the port 
) ; 

where local_ agent is an agent whose private key is known to the host. ADP may then deliver 
messages to the port. Each message is prepended with the name of its sender. Clients of ADP 
can send messages using 



94 

Host A HostB 

user 8 E) user 

kernel kernel 
············--····-···-················--·········-······-···- ·································-······-····-···················-

Local ~ 
I 

Ak r- auth~~ted authenucated ~ 1 
agents agents 

ADP (J ( ) ADP 

~emote~ 
I 

Ai ~ ~emote au enucated Ak 
agents 

au enncated 
agents 

msg-4 -------)> 
Figure 5.7: Certification of agent Ai from HA to H8 • HA sends a certificate msg 4 consist­
ing of the string (HA, R} encrypted with Ai 's private key. 

ADP_send( 
MESSAGE *msg, II the message being sent 
char *local_agent, II name of sender 
char *remote_host, II destination host name 
char *remote_port, II destination port ID 
char *remote_agent, II name of recipient 
BOOLEAN privacy, II whether message is private 
int max_delay //maximum local queueing delay 

The remote_agent argument is used only if privacy is true; in this case ADP will obtain a 
certificate of the agent on the remote host before sending the message. The max_ delay parame­
ter is a time interval (in microseconds) for which this message can be queued locally (see Sec­
tion 5.3.6). 

5.3.5. Transmission of Client Messages 

ADP's handling of client messages depends on the nature of the intervening network. A 
physical broadcast network (PBN) is one in which there is a single transmission medium. In 
the absence of packet loss due to buffer overrun. if any node on a PBN receives a packet in its 
entirety, then the node to which it is addressed also does so. A single Ethernet, for example, is 
a PBN. Token rings and bridged Ethemets, though they may support logical broadcast, are not 



95 

PBN's. 

ADP messages to a destination on the same PBN as the sender are transmitted as a 

sequence of network packets (fragments), each of which ends with a security trailer 4 contain­
ing a sequence number encrypted with the channel key. When the node to which a fragment is 
addressed receives a packet, the node decrypts the security trailer to obtain the packet's 
sequence number. If the sequence number is greater than that of the previously received packet, 
this is the first packet on the network with this sequence number. Since the sequence number is 
encrypted with the channel key, and the host at the other end of the ADP channel must have 
sent the packet, the packet is authentic and is accepted by the destination node. Thus, security 
trailers provide message authentication on PBN's. The destination ADP module handles 
reassembly. Strictly increasing sequence numbers are used; when the space of sequence 
numbers is exhausted, a new channel key is negotiated. Client messages for which privacy was 
requested are sent encrypted with the channel key; others are sent in cleartext 

If the destination host is not on a common PBN, ADP uses a lower-level Internet Protocol 
[81 b] module to handle routing and fragmentation. ADP delivers complete ADP messages to IP 

with a security header that includes a cryptographic checksum [Aid, Den84a] of the entire mes­
sage, encrypted with the channel key. The IP module at the destination host reassembles the 
ADP message and delivers it to the ADP module, which recomputes the cryptographic check­
sum and verifies that it matches the encrypted version. As before, private client messages are 
encrypted. 

5.3.6. Piggybacking 

In some cases, system perfonnance can be increased by piggybacking multiple client mes­
sages into a single ADP message (see Figure 5.8). This is made possible by allowing ADP 

clients to specify a maximum queueing delay for each message. Many types of messages, such 
as retransmissions, asynchronous write operations, and some types of acknowledgements, can 

be be delayed a small amount (a fraction of a second) with no loss in system perfonnance or 

functionality. These "non-urgent" messages can therefore be queued in the sender for this 
period and merged with other client messages on the same channel. In this case, one ADP mes­

sage may include several client messages. If the client messages do not require secrecy, then in 
general less encryption is required, since a single encrypted sequence number or checksum will 
serve to authenticate multiple client messages. Piggybacking may also reduce CPU overhead, 
since the per-message costs of piggybacking (queueing and timers) are likely to be lower than 
those of network packet transmission. 

The maximum delay of a client message is supplied by the process sending it (usually a 
transport protocol). If the delay is zero (i.e., for "urgent" messages) ADP will send themes­
sage as soon as possible. If the delay is nonzero the message may be queued for a period not 
exceeding the delay. The queueing period will be less if the queue exceeds the maximum ADP 
message size, or if there is a shorter-delay message in the queue. This maximum ADP message 
size will depend on the amount of buffer space available, and may be limited by the maximum 
size of the messages that can be accepted by the lower protocol layers. 

4 Either a security trailer or a security header can be used. 



Host A 

Ail 
Ai2 

HostB 

r Remote - auilienttcated 
agents 

Figure 5.8: Several agent-to-agent channels multiplexed on to an ADP channel 

5.4. Trust Requirements of ADP 

96 

The establishment of an ADP channel between two hosts HA and H8 results in the logical 
establishment of two channels (H A , H 8 ) and (H 8 , H A), if some trust requirements are satisfied. 
Let us investigate these trust requirements. 

In the ADP channel establishment protocol, let H A send the ADP channel request. In 

order to send the request, HA must obtain H8 's public key using name resolution in the name 
space. But notice that obtaining H8 's public key results in the establishment of a PKE-based 
channel(HA, H8 ) (see Section 3.4). Using results of Section 3.7, security of this channel 

requires the satisfaction of a trust predicate, which we denote by predAB . 5 

When H8 receives the ADP channel request from HA, H8 must obtain HA 's public key to 
decrypt the request Obtaining HA 's public key results in the establishment of a PKE-based 
channel(H8 , H A). Let the trust predicate that must be satisfied for the security of this channel 

be denoted by pred8A • 

If both predAB and pred8A are true, H A and H 8 correctly possess each others' public keys, 
and the single keyS sent by HA in the ADP channel request is known only to agents/hosts that 
might possess either HA 's private key or H8 's private key, i.e., the agents/hosts in key-

5 The trust predicate is determined by the sequence of channel compositions (in the name space) used in estab­

lishing the channel. 



·-

97 

closure(H A) 6 or in key-closure(H 8 ). Since the agents in key-closure(H A ) and key-closure(H 8 ) 

possess the private keys of HA and H8 respectively, we obtain that the following must be true 
(recall the meaning ofTu from Section 5.2): 

Tu(HA, key-closure(HA)) AT u(H8 , key-closure(H8 )) (5.3) 

If HA and H8 were to use S as their channel key, HA and H8 must have key user­
possessor trust in all the agents that might possess S , so as to ensure that these agents will not 
use S to compromise the security of the ADP channel between H A and H 8 • Since the agents 
that might possess S are those in key-closure(H A) or key-closure(H 8 ), we obtain that the fol­
lowing must be true: 

Trrop(HA, key-closure(HA), H8 ) A Trrop(HA, key-closure(H8 ), H8 ) A 

Trrop(H8 , key-closure(HA), HA) ATKup(H8 , key-closure(H8 ), HA) 

But notice that, using the definition of the universal trust (see Section 5.2), 

T KUP (H A , key -closure (H B ), H B ) 

(5.4) 

follows from: 

T u(H8 , key-closure (H8 )), 

and 

T KUP (H B , key -closure (H A), H A) 

follows from: 

Tu(HA, key-closure(HA)) 

Hence, in eq (5.4), 

Trrop(HA, key-closure(H8 ), H8 ) ATKUP (H8 , key-closure(HA), HA) 

follows from eq (5.3). 

Summarizing these results, we obtain the following theorem: 

Theorem 5.2: Establislunent of an ADP channel between two hosts H A and H 8 results in the 
logical establishment of channels (HA, H8 ) and (H8 , HA) if and only if: 

(1) the trust requirements for establishing channels (HA, H8 ) and (H8 , HA) using channel 
compositions in a PKE-based name space are satisfied, 

(2) HA has universal trust in all agents in key-closure(HA) and H8 has universal trust in 

all agents in key-closure(H8 ), and 

(3) Trrop(HA, key-closure(HA), H8 ) and TKup(H8 , key-closure (H8 ), HA) are satisfied. 

D 

6 The following short-hand notations are used throughout: A host's name mentioned in a place where an agent's 

name would be expected refers to the host's owner, an agent's name mentioned in a place where a host's name would 

be expected refers to all the hosts owned by the agent, and a set mentioned in a place where a member of the set 

would be expected refers to all the members in the seL 



98 

Now consider agent certification. When HA receives a certificate of an agent At from H8 , 

for all agents Ax that have processes on H A , channel(Ax, At) becomes established if some addi­
tional trust requirements are satisfied. Let us investigate these trust requirements. 

When HA receives At's certificate, HA must obtain At's public key. Obtaining A.t 's pub­

lic key results in the establishment of a PKE-based channel(HA, At). Let the trust predicate that 

must be satisfied for the security of this channel be denoted by predAk. 

If predAk is satisfied, HA correctly possesses A.t 's public key, and hence some agent that 

has A.t 's private key sent At's certificate to HA. If T u (Ak, key -closure (Ak )) is satisfied, Ak 

must have sent the certificate. Since the certificate contains the name of H8 , At on H8 must 

have sent the certificate. Since the certificate contains the random number T, Ak on H 8 must 

have sent the certificate during the kernel session of the current ADP channel. Thus, H8 has a 

process owned by At during the current kernel session. 

Now consider a message msga sent from H8 to HA with the message sender field equal to 

Ak, and the message recipient field equal to Ax. Since H8 has a process owned by Ak during 
the current kernel session, H8 possesses At's private key, H8 belongs to key-closure(Ak), and 

hence T u (At, H 8 ) is satisfied. Thus, H 8 does not masquerade as At, and hence msga must 

have been sent by At. If the trust requirements of Theorem 5.2 are satisfied, the authenticity of 

msg~a remains intact between H8 and HA. If Ax has a process on HA and HA is security­
correct, the authenticity of msg~a remains intact from HA to Ax. 

A similar derivation can be carried out for the privacy of a secret message sent from Ax to 

The following theorem summarizes the above derivations for the trust requirements of 
channel(Ax, A,t). 

Theorem 5.3: Suppose A.t is an agent having processes on a host H8 • For all agents Ax that 
have processes on a host H A , channel( Ax, A.t) is established when H A receives A.t 's certificate 
on its ADP channel to H8 if and only if HA is security-correct and the following trust require­
ments are satisfied: 

(1) the trust requirements specified by Theorem 5.2 for establishing channels (H A , H 8 ) 

and (H8 , HA), 

(2) the trust requirements for establishing channel(HA, Ak) using compositions in a PKE­
based name space, and 

(3) T u (A.t, key -closure (A.t )). 

D 

In the trust requirements given by Theorem 5.3 for channel(Ax, A.t ), the trust predicates 

predAk, pre dAB and pred8A arise from channel compositions in the name space. Since the name 
space is designed so as to satisfy the trust relationships in any channel composition carried out 
through it, pre dAle, predAB and pred8A are automatically satisfied. But the universal and key 
user-possessor trust requirements which involve the various key-closures can potentially greatly 
increase the trust requirements, and hence it is desirable to eliminate these trust requirements. 

Figure 5.9 illustrates an effect of a universal trust requirement involving a key-closure. 
Alice has a process on host HA owned by Riccardo, and Bob has a process on host H8 owned 

by Stuart. The channel request CRAB of the ADP channel between HA and H8 was sent by HA, 

encrypted with Riccardo's private key and Stuart's public key. Stuart himself has a process on 



99 

a host He owned by Peter. Since a host has access to its users' storage, Peter has access to 
Stuart's private key on He. Thus Peter can obtain the single key SKAB of the ADP channel 
between HA and H8 by decrypting CRAB with Stuart's private key and Riccardo's public key. 
Since messages from Bob to Alice are encrypted using SKAB, Peter can compromise the secu­
rity of communication between Bob and Alice. In other words, since Bob has placed universal 
trust in Stuart, and Stuart has placed universal trust in Peter, Bob has to place universal trust in 
Peter. In fact, Bob must place universal trust in owners 0 1 of all hosts on which Peter might 
have user processes, in owners 0 2 of all hosts on which owners 0 1 might have user processes, 
and so on. Thus, the requirement of universal trust in key-closures can be a serious disadvan­
tage. 

Let us see if we can eliminate the universal and key user-possessor trust requirements 
involving the various key-closures. The primary cause for these trust requirements in the above 
example is the accessibility of Stuart's private key by Peter. Suppose Stuart's host uses a 
(public-key, private-key) pair that is different from the (public-key, private-key) pair used by 
Stuart's user-level process on Peter's host. He no longer has access to the private key used by 
H A , Peter can no longer decrypt the channel request from H A to H 8 , and hence Peter can no 
longer obtain the key of the ADP channel between H A and H 8 • Consequently, the trust require­
ments involving key-closures vanish. 

Let ADP modifi4d denote ADP with the modification that each agent has two (public-key, 
private-key) pairs, one of which is used by the agent's hosts and the other is used by the agent's 
user-level processes. Key-closure(HA) and key-closure(H8 ) become empty. Key-closure(Ak) 
becomes the set of hosts, hosts (A.t ), on which Ak has processes. Using these substitutions in 
Theorems 5.2 and 5.3, we obtain the next two theorems fc.11· ADP modified: 

Theorem 5.4: Establishment of an ADP modified channel between two hosts H A and H 8 results in 
the establishment of channels (H A, H 8 ) and (H 8 , H A) if and only if the trust requirements for 
establishing channels (HA, H8 ) and (H8 , HA) using a PKE-based name space are satisfied. 

H~A H~B 

8. /s 
user '. / user 
----------------~.,-------·--·--------- ------------------------;r·---------------
kemel \ / kernel 

'. / 
~-----r----r---~~ 

owner(Host A) 
=Riccardo 

HostC 

---------------------------------M~~r. 
kernel 

owner(Host C) 

Figure 5.9: Effect of key-closure trust requirements 



100 

0 

Theorem 5.5: Suppose At is an agent having processes on a host H8 • For all agents Ax that 
have processes on a host H A , channel(A.x, At) is established when H A receives At's certificate 
on its ADP mod.ificd channel to H8 , if and only if HA is security-correct and the following trust 
requirements are satisfied: 

(1) the trust requirements specified by Theorem 5.4 for establishing channels (HA, H8 ) 

and(H8 ,HA), 

(2) the trust requirements for establishing channel(H A , At) using channel composition in a 
PKE-based name space, and 

(3) T u(At, hosts(At)). 

0 

Notice that the first two trust requirements of ADP modifud 7 (as given by Theorem 5.5) are 
automatically satisfied in the name space. The third trust requirement involves only those hosts 
on which At has/had processes, and, given that a host has access to all the data of an agent hav­
ing processes on the host, this trust requirement cannot be eliminated by any channel establish­
ment protocol. 

If agent-to-agent channels are established directly, establishing channel(Ai, At) requires 
that a trust predicate predilc, which is determined by the sequence of channel compositions 
between Ai and A.~: in the name space, be satisfied. In comparison, the trust requirements of 
ADP (as given by Theorem 5.5) are more numerous. In Section 5.7, we justify the increased 
trust requirements of ADP by its significant performance advantages over protocols that estab­
lish agent-to-agent channels directly. 

S.S. Trust Requirements of ADP When Name Space is SKE-based 

We now show that if the name space is SKE-based as in [BLN86], ADP requires global 
trust Consider a system consisting of hosts HA and H8 , agents Ai, Akl and Ak2, and an SKE­
based name space in which HA, H8 , Ai, At 1 and A.t2 are leaf nodes (see Figure 5.10). Let Ai 

have processes on HA, and At 1 and Ak2 have processes on H8 • Let hosts HA and H8 establish 
an ADP channel with a channel key SAB. As pointed out earlier, establishing the ADP channel 

involves the establishment of SKE-based channel(H A , H 8 ) and SKE-based channel(H 8 , H A) 

using compositions in the name space. Let the set of name space nodes between H A and H 8 be 

denoted by NS A _8 . The nodes in NS A -B are involved in establishing channel H A -H 8 . If the 
name space is SKE-based, as shown in Chapter 3, the nodes in NSA-B might possess channel 

key S AB of channel H A -H 8 • 

When HA receives a certificate of A.tt• SKE-based channel(HA, Akl) must be established 
using compositions in the name space. The key of channel(HA, Ak 1) becomes known to all 
name space nodes in the path between HA and A.tt· But ADP uses the same single key SAB for 
channel(H A , A.t 1). Thus S AB is now known to agents in any of NS A _8 or NS A -k 1• 

7 In the sequel, ADP will be used to mean AD P -»>fibi . 

-I 



101 

Figure 5.10: Global trust requirements when ADP is used with SKE-based name space 

Next, when H A receives a certificate of Ak2, channel(H A, Ak2) is established using compo­
sitions in the name space. Using similar arguments as above, we obtain that SAB is now known 

to agents in any of NSA-s, NSA-Jcl or NSA-k.2· 

When Ai on HA sends a secret message to either Au or A1c2, SAB is used for encryption. 

Since SAB is known to agents in any of NSA_8 , NSA-Jcl or NSA-JcZ• the following key user­
possessor trusts are required: 

TKuP (Ai, {NSA-B, NSA-k.l• NSA-JcU• Au)= true (5.4) 

(5.5) 

Continuing these arguments it ca.'l be shown that, if an agent having processes on H 8 can reside 

at any position in the name space, each agent on HA will be required to have key user-possessor 

trust in all the name space nodes (the middle argument to T KUP above becomes the universal 

set), and hence will be required to have global key user-possessor trust This is summarized by 
the following theorem: 

Theorem 5.6: ADP, if used in a system whose name space is SKE-based, requires global key 
user-possessor trust. 

0 

As a result of Theorem 5.6, ADP plus an SKE-based name space is an unacceptable combina­
tion in distributed systems without global trust. 

-I 



102 

5.6. Trust Domains 
The set of hosts in many distributed computing environments may contain subsets with 

the following property: Within a subset, the hosts and the communication channels between 
them are physically secure, and agents with access to the hosts all place universal trust in one 
another (Figure 5.11). By Theorem 5.1, universal trust is transitive, and hence the same host 

cannot belong to two domains. 8 Across subsets, the communication links may not be physically 
secure, and agents in one subset may not place universal trust in hosts in the other subset. We 
call such subsets trust domains. Suppose also that all communication across a subset boundary 
is routed through one or more hosts called domain gateways. Within a trust domain, no channel 

establishment mechanisms are necessary. Between two domains, the two domain gateways 9 

can establish a channel, and multiplex messages from, and demultiplex messages to, agents on 
various hosts within each domain. A special ADP module on the domain gateway performs 
these functions. This has the following advantages: 

• Efficiency: Communication within the domain has no encryption overhead. Only the 
domain gateway does encryption, so only it need to have encryption hardware. 

• Flexibility: The channel establishment mechanism between domain gateways can be 
changed at any time. Intra-domain communication will not see any changes. 

5.7. ADP versus Direct Establishment of Agent-to-Agent Channels 

Channel establishment mechanisms must be introduced into some levels of the network 
protocol architecture [Tan81, Tan88]. ADP being a host-to-host channel establishment proto­
col, these mechanisms can be introduced at the subtransport level. Protocols that establish 
agent-to-agent channels directly across the network must be introduced at transport or higher 
levels, because the lowest level at which processes (belonging to agents) rather than hosts can 
be communicating entities, is the transport level [SRC84, VoK83]. If agent-to-agent channels 
are established directly, establishing channel(A;, A.c) requires that a trust predicate predik> 

which is determined by the sequence of channel compositions between Ai and A.t in the name 
space, be satisfied. In comparison, the trust requirements of ADP (as given by Theorem 5.5) are 
more numerous. 

We will now justify the increased trust requirements of ADP (as compared to those of pro­
tocols that establish agent-to-agent channels directly) by the performance advantages of sub­
transport level channel establishment over channel establishment at transport or higher level 
protocols. The advantages can be grouped as follows: 

1) general advantages of subtransport level channel establishment, 

2) specific advantages relative to transport level channel establishment, and 

3) specific advantages relative to putting channel establishment above the transport level. 

8 Suppose a host HA belongs to two domains. The hosts of the first domain place universal trust in HA., but HA. 
places universal trust in hosts of the second domain. By transitivity of universal trust, hosts of the first domain place 
universal trust in those of the second. Similarly, we can show that hosts of the second domain place universal trust in 
those of the first. Consequently, the two domains can in this case be coalesced into a single domain. 

9 Recall that a host can only belong to a single domain. Thus, two domains must have two different domain 
gateways. 



103 

Figure 5.11: Trust domains 

5.7.1. General Advantages of Subtransport Level Channel Establishment 

Putting channel establislunent at the subtransport level has several advantages relative to put­
ting it at higher protocol levels: 

• It simplifies transport level protocols. When a host crashes, its channels are destroyed. 
Thus, remote host crashes can be detected at the host-to-host level at the time of channel 
establishment, and transport level protocols do not have to employ elaborate timer 
mechanisms to detect them [Che86, 81b]. If transport protocols above ADP employ a 
sequence number that is monotonically increasing within a channel, message duplicates 
and replays may be eliminated. Since a host crash initiates a new channel, duplicates 
across crashes are eliminated. Thus, 3-way handshakes are not required in transport proto­
cols for the purpose of duplicate elimination. This also means that 3-way handshakes can 
often be eliminated from transport-level protocols. A short transaction then requires just 
two messages in the best case, as opposed to at least six in TCP [Dif85, Ken77] and four 
in secure RPC [BiN84, Bir85]. 

• More than one protocol may exist at higher layers, and different protocols may require dif­
ferent channel establislunent mechanisms. Thus, unlike in the subtransport layer, channel 
establislunent mechanisms may have to be duplicated in higher layers. 

• There are two public-key operations per agent per remote host per kernel session. Often 
these operations can be done at boot time or during idle periods. There are no per-process 
or per-operation public-key operations, resulting in a substantial performance gain. 

• Since messages from all client processes and higher level protocols pass through the sub­
transport layer, a number of these messages destined to a common remote host can all be 



104 

combined into a single datagram and sent as a single ADP message. This can reduce the 

number of single key operations. 

• In the presence case of trust domains, handling channel establishment at the subtransport 
level drastically reduces the number of transport level connections necessary for commun­

ication between two processes in two different domains (see Figure 5.12). 

5.7 .2. Disadvantages of Transport Level Channel Establishment 

Transport level protocols are used to implement a variety of communication paradigms. 

Request/reply (RPC) [BiN84] and full duplex byte streams [81a] are two of the popular com­

munication paradigms. We examine secure RPC [Bir85] as an instance of channel establish­

ment in an RPC protocol, and secure TCP [Dif85, Ken77] as an instance of channel establish­

ment in a full duplex byte stream protocol. Both secure RPC and secure TCP are transport level 

protocols. 

Domain 1 <(---+~--)> Domain2 
i 

M . 
-. 

~ : ..................... -----······--· 

lbd i . 
. i : 
: i : 
0 0 0 

t ....................................... J. .............................. ..: L ............................................................. ~ 
I 

Host A HostC HostD HostB 
(a) 

~ Ax~xl~~ ~~{Lt~ ~~Ni:~ t=t=j ! : ·r ··1 l:t=[ 
i. ........ ,..,...,,.,..,.,.,. ...... ., .... .., .................. ,.: I I t : \. .. ••"' • •••'".,. ••••••• ••••• j"'""'"'-••••• •••• ••• ..... .. .... •"' ••• '""' •••• ••• ••••• •••• "'""• "'"''" "'"' I 

T: Transport Layer 
A:ADP 
N: Network Layer 

i 

(b) 

Figure 5.12: Comparison of ADP (Figure (a)) and transport level channel establishment 

(Figure (b)) with regard to trust domains. In ADP, the number of transport level connec­

tions required for inter-domain channelsAi 1-Au and Ai2-Ak2 is much smaller. 



105 

5.7 .2.1. Secure RPC 

When a client issues its first RPC request to a remote server, the RPC mechanism estab­
lishes a channel between the two processes. This consists of agreeing on a channel key to be 
used for encrypting RPC requests and replies. There are several disadvantages of such a 
scheme: 

• For each channel, the RPC system must maintain long-tenn state infonnation consisting 
of a channel key and sequence numbers of requests within the channel. This converts sim­
ple stateless RPC into one with long-tenn state infonnation. 

• A three-way handshake is necessary to agree upon the channel key. There are O(n 2) 

encryption keys to be agreed upon. The cost of this three-way handshake is small if it is 
amortized over many RPC's. If, however, there are lots of short-lived processes making 
just one or two remote procedure calls, the perfonnance penalty due to a three-way 
handshake is substantial. This can reduce the efficiency of RPC for short transactions. 

• There are four public key operations for each channel. If the channel is established for 
just a single RPC, the relative cost is substantial. 

• There is a single key encryption and a decryption for each RPC request, reply, and ack­
nowledgement. Since messages from different processes use different channel keys, it is 
not possible to reduce the encryption cost by piggybacking messages from different 
processes that are all destined to the same host. 

5.7.2.2. Secure TCP 

TCP is a DARPA Internet transport protocol [81a] providing full duplex byte stream con­
nections between processes on different hosts. Secure TCP [Dif85] requires an initial agree­
ment upon a single key to be used during the lifetime of the TCP connection after the end points 
are authenticated to each other. In addition to those mentioned in Section 5. 7.1, there are two 
more disadvantages associated with this scheme: 

• Four public key operations are perfonned for each TCP connection. 

• Encryption cost reduction by piggybacking is impossible since keys are not per host-pair. 

5.7 .3. Disadvantages of Having Channel Establishment above the Transport Level 

There are several disadvantages in placing channel establishment mechanisms above the 
transport level: 

• Transport level protocols like TCP do connection establishment using three-way 
handshakes. If channel establishment mechanisms are above the transport layer, they 
require their own handshake to agree upon keys af~r the transport level has established a 
connection. This duplication of handshaking entails higher message overhead. 

• Transport level protocols do error detection using (insecure) checksums. Channel estab­
lishment mechanisms above the transport layer must do their own cryptographic check­
summing. This is an unnecessary duplication of effort as error detection at higher layers 
can be avoided if checksumming is done at the subtransport or transport level. 

• Transport level protocols employ sequencing to eliminate duplicates and out-of-sequence 
messages. Since an intruder could change the transport level headers and hence the tran­
sport level sequence numbers, channel establishment mechanisms above the transport 
layer must also do sequencing to detect such an intrusion, again resulting in an unneces­
sary duplication of effort. 



106 

• If an intruder sends a false message with the correct transport level sequence number, the 
transpOrt level protocol will accept it as the next message and reject the true message 
which may arrive later. The channel establishment mechanisms above will reject the false 
message correctly, but will never get the true message. False acknowledgements at lower 
levels can disrupt the sequencing. The only way to recover from such situation is to re­
establish the connection at both the transport and the secure communication levels. This 
has the potential for much unnecessary tearing down of connections and the associated 
performance overhead. 

• Unauthenticated messages are detected only at the level where channel establishment 
mechanisms are. These messages are unnecessarily processed at all lower levels of the 
protocol hierarchy. Thus, if the channel establishment mechanisms are at a high level, the 
amount of this unnecessary work can be large (but this should be a rare occurrence). 

• Public key operations are more numerous than those required by ADP, and single key 
operations cannot be reduced by piggybacking. 

5.8. Experimental Verification 

No design is complete without performance evaluation [Fer78]. It is quite clear from what 
has been said in the previous sections that the performance advantages of ADP can be expected 
to be primarily due to: 

(a) the reduced total overhead for channel establishment: in ADP, expensive public-key 
encryption and three-way message handshake overhead are needed only for setting up a 
host-to-host channel and once per agent per host (for sending certificates), rather than for 
every agent-to-agent connection or session; ADP channels will be many fewer in number 
and much longer lived; and 

(b) the much higher likelihood that the benefits of piggybacking will be felt. as the traffic 
intensity on a host-to-host channel is never lower than that on an agent-to-agent channel 
involving the same two hosts, and is often much higher; one can easily speculate that the 
effectiveness of piggybacking grows with the traffic intensity, as more client messages can 
be shipped within one ADP message; also, with channel establishment mechanisms at a 
higher level, each channel will have its own channel key, and client messages traveling on 
two different channels between the same two hosts cannot be bundled together in the same 
ADP message, as their encrypted portions will require two different keys. 

However, given that ADP is better than direct agent-to-agent channel establishment, an 
important question is: How much better is it ? 

To give this question an empirical answer, we measured the performance of a prototype of 
ADP implemented as part of the DASH Project at the University of California at Berkeley 
[AFV87d]. The implementation is written in C++ and runs on Sun 3/50 workstations connected 
by 10 Mb/s Ethernet 

Since we had not yet built any transport protocols on top of ADP, we could not implement 
agent-to-agent channel establishment mechanisms in them. We therefore transformed ADP for 
some of the experiments into an agent-to-agent channel establishment protocol, i.e., we had 
ADP establish a channel (using public key encryption) every time a process staned communi­
cating with another process on another host 

Because of the influences on ADP performance of client message sizes and arrival times, 
we could not use a synthetic input such as those of some previous studies, where all messages 
have the same size and arrive at regular intervals. Thus, it was decided to run trace-driven 



107 

measurement experiments. Figure 5.13 shows the experimental setup . 

.... 

Sun 3/50 Sun 3/50 

Keyboard/Display Keyboard/Display 

Sender Receiver 

Process Process 

DASH DASH 
ADP ADP 

Kernel Kernel 

IP IP 

Ethernet Ethernet 

Driver Driver 

10 Mb/S Ethernet 

Other Workstations File Server 

Figure 5.13: ADP experimental setup 



108 

Since a complete DASH system incorporating ADP does not exist yet, a real ADP input 
trace cannot be measured. The assumption was made that the message traffic on a local-area 
network interconnecting a variety of machines, including diskless workstations and file server, 
would represent a reasonable approximation to the type of traffic that an ADP module will 
experience in a DASH system. 

A trace of all packets transmitted on a 10 Mb/s Ethernet among 96 machines of various 
types, 49 of which were diskless Sun workstations and 6 were Sun file servers, was converted 
into the corresponding client message trace, and also decomposed into traces containing only 
the messages generated by a given transport level protocol. In particular, in the experiments 
whose results are summarized below, we used the following three traces: 

• ALL: a trace including all client message types; 

• TCP: a trace containing only TCP messages (TCP was taken as an example of a transport 
level agent-to-agent full-duplex byte stream protocol). 

• NFS: a trace containing only SUN NFS messages (NFS was taken as an example of a tran­
sport level agent-to-agent request/response protocol). 

The primary performance indices we measured were: 

Latency L: the average delay incurred by a message between the instant it is given to the 
sending ADP module for transmission and the instant it is delivered by the receiving ADP 
module to the destination process on the destination host. To compute L, we averaged the 
delays of the messages in a given finite sequence. 

Throughput T: the maximum rate at which information can be transmitted by ADP on the 
sending host and received by ADP on the destination host. 

In a throughput experiment, the client messages in the trace arrive at such a high rate that the 
input queue of ADP is never empty. In the agent-to-agent channel establishment case, when the 
arrival rate of a message trace is increased with respect to the measured one, a decision must be 
made about whether and how the process creation rate should be modified. There are two 
extreme cases: (1) The process creation rate is kept constant while the rate of message produc­
tion by the existing processes is increased. This is one end of the spectrum and represents the 
best possible case for an agent-to-agent channel establishment protocol. The throughput for this 
scenario will be denoted by T1. (2) The mean message production rate of processes is fixed. 
Thus, when the message transmission rate is increased to its maximum value, the process crea­
tion rate must be increased linearly. This represents the worst case for agent-to-agent channel 
establishment. The throughput for this scenario will be denoted by T2. These two cases are of 
interest only for agent-to-agent channel establishment. . 

Figure 5.14 shows the latency and throughput values for the following cases: (1) ADP (2) 
direct establishment of agent-to-agent channels in the TCP trace, and (3) direct establishment of 
agent-to-agent channels in the NFS trace. From the figure, we conclude that the performance 
gains of ADP over both instances of agent-to-agent channel establishment are substantial. The 
inferior performance of agent-to-agent channel establishment approaches in the table is to be 
attributed entirely to the much higher rate of PKE-based channel establishment operations that 
these approaches require with respect to that caused by ADP, since even the ADP experiments 
were performed without piggybacking. PKE-based channel establishment is quite time­
consuming: we have measured in our system an average establishment time of 1. 75 seconds. 

In the agent-to-agent channel establishment experiments, the TCP trace had 76 new con­
nection establishments, and the NFS trace had 41 new RPC transactions from new processes, 
both in a sequence of 10,000 messages. Corrections introduced to remove edge effects reduced 



.... 

... 

Latency (ms) Throughput Throughput 
T1 (kB/s) T2 (kB/s) 

TCP NFS TCP NFS TCP NFS 

Sub transport 6 8 90 325 90 325 

Transport 30 42 76 305 18 152 

Average Latency Throughput (k:B/s) 
(ma) 

360 Tl NFS T2 NFS 

S T S T 

WJ Subtransport 

I Transport 

ST ST ST ST 

109 

Figure 5.14: Table and histogram showing latency and throughput values for TCP and 
NFS traces with subtransport and transport approaches to channel establishment. T1 is the 
throughput with constant process creation rate. T2 is the throughput with a process crea­
tion rate linearly increasing with the arrival rate. 



110 

the values of the numbers of new connections slightly in the latency and T2 experiments. In the 
T1 experiments, there were 7 new connections in the TCP trace and 4 new RPC transactions in 

the NFS trace. 

Figure 5.15 confirms the conjectures made at the beginning of this section about the effect 

of piggybacking in ADP. The ALL input trace was used. Among the many experiments we 

performed, an interesting one was that intended to determine the variation of the latency as the 
arrival rate of messages in the input trace was progressively increased. Figure 5.15 shows that 

the effect of piggybacking is insignificant at low arrival rates. Without piggybacking, an 
increase in the message arrival rate causes a rapid increase in the latency, whereas with piggy­

backing the latency starts increasing for much higher arrival rates. Figure 5.16 shows the laten­
cies, throughputs and CPU utilizations for an unmodified client message trace (ALL) with an 
average message arrival rate of 250 messages/s, for the following cases: ( 1) without any channel 

establishment mechanisms, (2) without channel establishment mechanisms but with message 
piggybacking, (3) with ADP channel establishment but without message piggybacking, and (4) 

with ADP channel establishment and with message piggybacking. The difference in perfor­
mance between cases 1 and 2 is considerable. The performance of case 4 is very close to that of 
case 2, whereas the performance of case 3 is less than that of case 1. This shows that message 
piggybacking can keep the performance cost of channel establishment very small. 

The results of our experiments therefore show that the performance gains of ADP, due 

both to the reduction in the total overhead of channel establishment and to the advantages of 
piggybacking, are indeed substantial. 

5.9. Conclusion 

Trust requirements can be traded for performance of channel establishment protocols. If 
channel composition is PKE-based, slightly increasing the trust requirements allows agent-to­
agent channels to be built on top of host-to-host channels. This host-to-host approach to chan­
nel establishment can greatly increase the performance of agent-to-agent secure communica­
tion. The accompanying increase in trust requirements is still satisfied in the distributed 
system's name space. However, if channel composition is SKE-based, this approach requires 
global trusts which may not be satisfied in the system's name space. Protocols for establishing 
host-to-host channels can be handled at the subtransport level of a network protocol hierarchy. 
Experimental measurement of a prototype of a host-to-host channel establishment protocol 
confirms its expected performance advantages. 



r . ..., 

111 

Average Latency L (ms) 
200 ........ ----· ........... r· ............ ----··:··--· _____ .. - ....................... ·--:· .. ------........... :··--.... r· ....... ·-:- ................... ··: -------- ........... ·:!'"''"''"''"' ..................... f' ............................... , 

' ' ' ' i ' ' 'I ' • 
i i ! ! ; i ! ii ! i 
! ! ! ! . ! ! !i ! ! 
: I : I ! : : :• : : 

···--····--t·--····-···-r·-····-···· ····-····---~---·······-··:·····1··-····t ····-····-·t····-·······+f.--·········-r·····-······1 

l Q-loff l l l i l Q±on i! l i 
' - • • • I • • .I , , 

i ! i ! i i i ! H i i 
··········-·t···-········: ·- ··· · t····-·······i·············i····t···-·· ········· ·r····-·······i············t············i 

------------1------------1-------- .t _________ .J _____________ J ____ /_______ -------------l------------1~---L ......... .J ~ ~ ~ Q ~ rr ~ i ~ i r··---< ~ ~ 
____________ l_ ___________ l ___________ L_ _______ :_~_ ....... L.L.... L ......... L .......... i .... Q. =kn-----J 

: ! : : ! i ; ! ;: ! ! 
i i i i : i i i !i i i 
i i ! ! t : i ! !! ! i 

.................................. r-·-·--·--·--+----- ---··+·--··-·-·--~----····--·--i··+---·- ·-r----·-·---···r·-----·-·--fr·------··---+-----............... -: 
: : : : : i : : 1: : : 
i i i i i i i i ii i i 
: ! ! ! ! . ! : i! ! ! 
: : : : :I : : I: : : 

••. ··-· ···---~-·······-·· ·+· • . •. ···ol-·· ··-·· •• ···l· ..••..• ·····l-~. •• •• . --~---. ·-·· ····• •• ··-·· •••• 1 ••••••• ··-·· •• + .......... ··l 
: : : ! :; ! : i! ! ! 
: : : : i i ! : j ! : : 
! ! ! !; ! ! i! : ALL 

60 ··········-·+···-····-·· t·-··· ·····+·····-····-~·-········-· :. -···· ·····t······-······t·········-i·+·······-····+········ ····i 
: : : : : : I : +-·-+·-·+ TCP : : : : / : : i : I I 

~ ~ ~ ~ I ! ! j ! ! ! 
·····-····--·~----· ..... .;...... . .... .;. ............ j ...•.... i... ... ···-···-~-· ·-······--·~---·····-~--~·-·····-···-+---··-······~ 

! i ! i / 1 i i ! i i i 
: : : : / : : ! : : : 
! i i i / ! ! I i ! ! 

............................... ~ ........................ +----- ........ .; ........ _ ......... Jt:........................ .. ...................... i-·-·-·---···-~----·--i--...... ~--·-··-···-~-·--··--··--~ 
: : ,. . .": : : / : : : 

I : -~- ....... ~ ____ l ____ .. __ -·-----L:: -------~:: --'#

1 
!:: i:: ;::: 

-·-·t·------;·----- 1---- i 
0+---~---+~~~--+---~---+--~~--+---~--~ 

180 

160 

140 

120 

100 

80 

40 

20 

0 100 200 300 400 500 600 700 800 900 1000 

Arrival Rate R (messages per second) 

Figure 5.15: Effect of piggybacking on latency with increasing message arrival rates (ALL 
and TCP traces; piggybacking is denoted by Q =on) 



No security mechanisms 
No piggybacking 

No security mechanisms 
Piggybacking present 
Subtransport security 

No piggybacking 

Subtransport security 
Piggybacking present 

Latency (ms) 

Em Without Security 
~ With Security 

Latency 
(ms) 

67 

11 

107 

11 

CPU 
Overhead(%) 

Throughput 
(kB/s) 

350 

760 

328 

750 

Throughput 
(kB/s) 

112 

CPU 
Overhead 

(%) 

39.9 

20.09 

59.79 

20.3 

Figure 5.16: Table and Histogram showing performance effects of piggybacking (ALL trace) 



CHAPTER 6 

CONCLUDING REMARKS 

6.1. Conclusion 

We have developed an axiomatic theory of trust in distributed systems. Our theory of 
trust is based on modal logics of belief. Any well fonned fonnula assumed to be valid in addi­
tion to the axioms of the logic is considered as a trust specification. This gives a lot of power 
and generality in expressing trust relationships. We have presented systematic methods for syn­
thesizing protocols that are necessary and sufficient for implementing a given trust specification 
in a distributed system. 

Trust arises primarily in establishing channels for secure communication. The only way 
to establish a new channel is by composing a sequence of existing adjacent channels. There are 
two kinds of channels: independent channels, which are provided at system configuration and 
do not have any trust requirements, and dependent channels, which are composed from indepen­
dent channels and have trust requirements. Channel composition mechanisms are commonly 
based on either public key encryption (PKE) or single key encryption (SKE). PKE-based chan­
nel composition requires ternary trust relationships known as authenticity trusts. SKE-based 
channel composition has much larger trust requirements than PKE-based channel composition. 
The differences in the trust requirements of PKE and SKE-based channel compositions translate 
into several advantages of PKE-based over SKE-based channel composition with regard to 
replication, caching, pennanence of trust requirements, and so on. Within each channel compo­
sition mechanism, the trust requirements are not symmetric with regard to the agents involved 
in the mechanism. Our analyses provide insight into the basic structure and limitations of 
mechanisms with regard to their trust requirements. 

In a distributed system, it is desirable to have a tree of independent channels. It is con­
venient for the tree of independent channels to represent also the global name space of the sys­
tem. There are two channel composition orders, namely, iterative and recursive. Iterative and 
recursive channel composition orders require different trusts and exhibit interesting duality pro­
perties. As one of the most important applications of a fonnal theory of trust, we have 
developed polynomial-time algorithms for synthesizing name spaces so that, given a channel 
composition order, and the trust relationships among agents, PKE-based channel composition 
between any two agents requires only a subset of the given set of trust relationships. The trust 
specifications are in general functions of three agents, but can also be functions of two agents, 
in which case the algorithms become simpler. Each node in a name space has to store the data­
base of the public keys of its children, and it is desirable to put upper and lower bounds on the 
size of this database. However, the problems of putting upper or lower bounds on the number 
of children of each node in a name space are NP-completc. 

The polynomial-time name space synthesis algorithms have been implemented and exper­
imented with. Sample runs of these algorithms show that small differences in trust relationships 
can cause substantial differences in name spaces, thus demonstrating the practical usefulness of 
these algorithms. 

113 



,_... ---------

114 

No synthesis is complete without performance considerations. Trust requirements and 
performance of channel establishment mechanisms can be traded for each other. If the channel 
composition is PK.E-based, slightly increasing the trust requirements allows agent-to-agent 
channels to be built on top of host-to-host channels. This host-to-host approach can greatly 
increase the performance of agent-to-agent secure communication. The accompanying increase 
in trust requirements is still satisfied in the distributed system name space. However, if channel 
composition is SKE-based, this approach requires global trusts, which may not be satisfied in 
the system's name space. Protocols for establishing host-to-host channels can be handled typi­
cally in the top portion of the network layer or in a special subtransport layer of a network pro­
tocol hierarchy. The experimental measurement of a prototype of a host-to-host channel estab­
lishment protocol confirms its expected performance advantages. 

6.2. Future Work 

In Chapter 2, we showed that the implementation of trust specifications requires con­
straints on message transactions among agents. Many of these constraints are of the form: 
send/receive a particular message before/after sending/receiving some other message. A more 
general approach to representing such constraints would involve temporal reasoning. We pro­
pose to investigate the possibility of combining temporal reasoning with modal logic for this 
purpose. 

The trust relationships considered in Chapter 3 were functions of at most three agents. 
Trusts can also involve more than three agents. Figure 6.1 shows a scenario in which a trust 
involves four agents. Suppose it is known that, when IBM queries IBM -J for the key of 
ibaraki, IBM -J either returns the correct key of ibarald or collaborates with jap to return 
jap 's key. When IBM -J returns a key key 1 in answer to IBM's query for ibarald 's key, IBM 

obtains jap 's key key 2 through an independent path, namely, IBM -USA- I -jap. IBM then 
compares key 1 and key 2, and accepts key 1 as ibaraki 's key only if the two keys are not identi­
cal. Here a trust relationship involving IBM, IBM -J, ibaraki and jap is necessary. We pro­
pose to study the formalization of such complex trust relationships that may involve more than 
three agents. 

In Chapter 4, we developed algorithms for synthesizing global name spaces from trust 
specifications. Additional considerations, such as fault tolerance, may be used in these syn­
thesis algorithms. In a fault-tolerant name space, some minimum number of trust relationships 
must become false before the name space becomes discmmected. Redundancies in trusts will 
have to be used in constructing such fault-tolerant name spaces. Another desirable feature of 
name spaces is the localization of dynamic reconfiguration when trust relationships change. 

In Chapter 5, we outlined the trust requirements involving user processes and their local 
hosts. An interesting extension would be to study trust relationships involving user processes 
and remote hosts, such as those involving a client and a server's kernel, or a server and a 
client's kernel. 



115 

.. 

Figure 6.1: illustration of a trust that involves more than three agents 



BffiLIOGRAPHY 

[AHU74] 
A. Aho, J.E. Hopcroft and J.D. Ullman. 
The Design and Analysis of Computer Algorithms. 
Addison-Wesley, Reading, MA., 1974. 

[Ak183] 
Selim G. Ald. 
Digital Signatures: A Tutorial Survey. 
IEEE Computer, pages 15-24, February 1983. 

[Akl] 
Selim G. Ald. 
On The Security of Compressed Encodings. 
Advances in Cryptology: Proceedings of Crypto' 83 , pages 209-230. 

[AnV87] 
David P. Anderson and P. Venkat Rangan. 
A Basis for Secure Communication in Large Distributed Systems. 
Proceedings of the IEEE Symposium on Security and Privacy, Oakland, Ca., April1987. 

[AFV87a] 
David P. Anderson, Domenico Ferrari, P. Venkat Rangan and Shin-Yuan Tzou. 
The DASH Project: Issues in the Design of Very Large Distributed Systems. 
Research Report No. 87/338, Computer Science Division, University of California, 
Berkeley, January 1987. 

[AFV87b] 
David P. Anderson, Domenico Ferrari, P. Venkat Rangan and Bruno Sartirana. 
A Protocol for Secure Communication in Large Distributed Systems. 
Proceedings of the 7th International Conference on Distributed Computing Systems, 
Berlin, West Germany, September 1987. 

[AFV87c] 
David P. Anderson, Domenico Ferrari and P. Venkat Rangan. 
Subtransport Level: The Right Place for End-to-End Security Mechanisms. 
Research Report No. 871346, Computer Science Division, University of California, 
Berkeley, March 1987. 

[AFV87d] 
David P. Anderson, Domenico Ferrari, P. Venkat Rangan and Bruno Sartirana. 
The Empirical Evaluation of a Security-Oriented Datagram Protocol. 
Performance' 87, Brussels, Belgium, December 1987. 

[BLN82] 
A. D. Birrell, R. Levin, R. Needham and M.D. Schroeder. 
Grapevine: An Exercise in Distributed Computing. 
Communications of the ACM, 25(4):260-274, April1982. 

116 



[BiN84] 
A.D. Birrell and B.J. Nelson. 
Implementing Remote Procedure Calls. 
ACM ACM Transactions on Computer Systems, 2(1):39-59, Feb. 1984. 

[Bir85] 
A. D. Birrell. 
Secure Communication using Remote Procedure Calls. 
ACM Transactions on Computer Systems, 3(1):1-14, February 1985. 

[BLN86] 
A. D. Birrell, B. W. Lampson, R. M. Needham and M. D. Schroeder. 
A Global Authentication Service without Global Trust. 
IEEE Symposium on Security and Privacy, 1986. 

[CGH81] 
M.H. Cheheyl, M. Gasser, G.A. Huff and J.K. Millen. 
Verifying Security. 
Computing Surveys, 13(3):279-339, September 1981. 

[Che84] 
D. R Cheriton. 
The V Kernel: A Software Base for Distributed Systems. 
IEEE Software, pages 19-42, Apri11984. 

[Che86] 
D. R Cheriton. 
VMTP : A Transport Protocol for the Next Generation of Communication Systems. 
Proceedings of the Data Communications Symposium, pages 406-415, Aug 1986. 

[Den82] 
D. E. Denning. 
Cryptography and Data Security, Addison-Wesley, Reading, MA., 1982. 

[Den84a] 
D. E. Denning. 
Cryptographic Checksums for Multilevel Database Security. 
Proceedings of the Symposium on Security and Privacy, pages 52-61, May 1984. 

[Den84b] 
Dorothy E. Denning. 
Digital Signatures with RSA and Other Public-Key Cryptosystems. 
Communications of the ACM, 27(4):388-392, April 1984. 

[DiH76] 
W. Diffie and M. Hellman. 
New Directions in Cryptography. 
IEEE Trans. Information Theory, IT-22(6):644-654, Nov 1976. 

[Dif82] 
W. Diffie. 
Conventional Versus Public Key Cryptosystems. 

117 

Secure Communications and Asymmetric Cryptosystems, Edited by Gustavus J. Simmons, 

Westview Press, Boulder, Colorado, 1982. 

[Dif85] 
W. Diffie. 



Security for the DoD TCP. 
Advances in Cryptology: Proceedings ofCrypto' 85, 1985. 

[EKW74] 
A. Evans, W. Kantrowitz and E. Weiss. 
A User Authentication Scheme Not Requiring Secrecy in the Computer. 
Communications of the ACM, 17(8):437-442, Aug. 1974. 

[FNS75] 
H. Feistel, W.A. Notz and J.L. Smith. 
Some Cryptographic Techniques for Machine to Machine Data Communications. 
Proceedings of the IEEE, 63(11):1545-1554, Nov. 1975. 

[Fer78] 
D. Ferrari. 
Computer Systems Performance Evaluation. 
Prentice-Hall Inc., Englewood Cliffs, N.J., 1978. 

[GaJ79] 
M.R. Garey and D.S. Johnson. 

118 

Computers and Intractability: A Guide to The Theory of NP-Completeness, W.H. 
Freeman, San Francisco, CA., 1979. 

[HaM85] 
J. Y. Halpern and Y. Moses. 
A Guide to the Modal Logics of Knowledge and Belief: Preliminary Draft. 
Proc. 9th International Joint Conference on AI, pages 479-490, Los Angeles, California, 
1985. 

[Hin62] 
J. Hintikka. 
Knowledge and Belief 
Cornell University Press, Ithaca, NY, 1962. 

[Ken77] 
S. T. Kent 
Some Thoughts on TCP and Communication Security. 
Local Network Note, MIT, Laboratory for Computer Science, May 1977. 

[KIP79] 
C. S. Kline and G. J. Popek. 
Public key vs. conventional key encryption. 
AFIPS Conference Proceedings, Arlington, Va., 48:831-837, 1979. 

[Koc] 
M. Kochanski. 
Developing an RSA Chip. 
Advances in Cryptology: Proceedings of Crypto' 85. 

[Kon84] 
K. Konolige. 
A Deduction Model of Belief and its Logics. 
Doctoral Dissertation, 1984. 

[Kon86] 
K. Konolige. 
J.Y. Halpern, editor. 



119 

What Awareness isn't: A Sentential View of Implicit and Explicit Belief. 
Proc. 1st Conference on Theoretical Aspects of Reasoning about Knowledge, pages 241-
250, 1986. 

[Kri63] 
S. A. Kripke. 
Semantical Considerations on Modal Logics. 
Acta Philosophica Fennica, 16:83-94, 1963. 

[Lan81] 
C. E. Landwehr. 
Formal Models for Computer Security. 
Computing Surveys, 13(3):247-278, Sept. 1981. 

[Lu86] 
W. P. Lu and M. K. Sundareshan. 
A Hierarchical Key Management Scheme for End-to-End Encryption in Internet 
Environments. 
IEEE Symposium on Security and Privacy, pages 138-147, 1986. 

[Men87] 
E. Mendelson. 
Introduction To Mathematical Logic. 
Wadsworth and Brooks/Cole Advanced Books & Software, Monterey, California, 1987. 

[Mor86] 
L. Morgenstern. 
J.Y. Halpern, editor. 
A First Order Theory of Planning, Knowledge, and Action. 
Proc. 1st Conference on Theoretical Aspects of Reasoning about Knowledge, pages 99-
114, 1986. 

[MuT84] 
S. J. Mullender and A. S. Tanenbaum. 
Protection and Resource Control in Distributed Operating Systems. 
Computer Networks, 8:421-432, 1984. 

[NBS77] 
NBS. 
Data Encryption Standard. 
FIPS publication 46, NBS, U.S. Dept. of Commerce, Washington, D.C., 1977. 

[NeS78] 
R. M. Needham and M. D. Schroeder. 
Using encryption for authentication in large networks of computers. 
Communications of the ACM, 21(12):993-999, December 1978. 

[PoK79] 
Gerald J. Popek and Charles S. Kline. 
Encryption and Secure Computer Networks. 
Computing Surveys, 11(4):331-356, December 1979. 

[RSA78] 
R. L. Rivest, A. Shamir and L. Adleman. 
A method for obtaining digital signatures and public-key cryptosystems. 
Communications of the ACM, 21(2):120-126, February 1978. 



120 

[Sal74] 
J. Saltzer. 
Protection and the Control of Information Sharing in Multics. 
Communications of the ACM, 17:388-402, Juy 1974. 

[SRC84] 
J.H. Saltzer, D.P. Reed and D.O. Oark.. 
End-To-End Arguments in System Design. 
ACM Trans. Comput. Syst., 2(4):277-288, Nov. 1984. 

[SJR86] 
R. D. Sansom, D.P. Julin and R. F. Rashid. 
Extending a Capability Based System into a Network Environment. 
Technical Report, Computer Science Department, Carnegie-Mellon University, April 
1986. 

[STB86] 
R.E. Schantz, R.H. Thomas and G. Bono. 
The Architecture of the Cronus Distributed Operating System. 
Proc. 6th Int. Conf on Distributed Computing Systems, pages 250-259, May 1986. 

[S1P86] 
E.L. Slate and J.A. Popko. 
The Next Five Years in Communications. 
Telecommunications, pages 49-60, January 1986. 

[Tan81] 
A.S. Tanenbaum. 
Network Protocols. 
Comput. Surveys, 13(4):453-489, Dec. 1981. 

[Tan88] 
A.S. Tanenbaum. 
Computer Networks. 
Prentice-Hall, Englewood Oiffs, N.J., 1988. 

[TPR84] 

[Ter] 

D.B. Terry, M. Painter, D.W. Riggle and S. Zhou. 
The Berkeley Internet Name Domain Server. 
Technical Report No. University of California, Berkeley/Computer Science Department 
84!182, University of California, Berkeley, May 1984. 

D.B. Terry. 
Distributed Name Servers: Naming and Caching in Large Distributed Computing 
Environments. 
Doctoral Dissertation, Report No. 85/228, Comp:lter Science Division, University of 
California. 

[VeA87] 
P. Venkat Rangan and Ron Ashany. 
Application of AI to Secure Communication in Distributed Systems. 
Proceedings of International Workshop on Application of AI, Hitachi City, Japan, May 
25-27 1987. 



121 

[Ven88] 
P. Venkat Rangan. 
An Axiomatic Basis of Trust in Distributed Systems. 
Proceedings of 1988 IEEE Symposium on Security and Privacy, Oakland, California, 
Apri11988. 

[VoK83] 
V L. Voydock and S.T. Kent. 
Security Mechanisms in High-Level Network Protocols. 
ACM Comput. Surveys, 15(2):135-171, June 1983. 

[Wei69] 
C. Weissman. 
Security Controls in the ADEPT-50 Time-Sharing System. 
Fall Joint Computer Conference, AFIPS Conf Proc., 35:119-133, 1969. 

[81a] 
RFC 791: Internet Protocol. 
Information Sciences Institute, University of Southern California, September 1981. 

[81b] 
RFC 793: Transmission Control Protocol. 
Information Sciences Institute, University of Southern California, September 1981. 



APPENDIX A 

Trust Specifications for Name Space Design Example of Section 4.9 

The sample set of trust specifications used in the example of Section 9 of Chapter 4 are as 
follows. For brevity, only those trust relationships that are assumed to be true, are enumerated. 

T (IBM -1, IBM, ARC) = true T(lap,IBM,ARC) =true 

T(Sorry, IBM, ARC) =true T (Sorry -USA , IBM, ARC) = true 

T (IBM -1, ARC, IBM) = true T(lap, ARC, IBM) =true 

T(Sorry, ARC, IBM) =true T(Sony-USA, ARC ,IBM) =true 

T (ARC , IBM, IBM -1) = true T(lap, IBM, IBM -1) =true 

T (Sorry, IBM, IBM -1) =true T (Sorry -USA, IBM, IBM -1) =true 

T (ARC, IBM -1, IBM) = true T(lap, IBM -1, IBM) =true 

T (Sorry, IBM -1, IBM) = true T(Sony-USA, IBM -1, IBM) =true 

T (IBM -1, ARC, Sony -USA) = true T (IBM, ARC, Sony -USA ) = true 

T(lap, ARC, Sorry-USA) =true T (Sony, ARC , Sony -USA) = true 

T(ARC, IBM -1, lap) =true T(IBM, IBM -1, lap) =true 

T(Sorry, IBM -1, lap) =true T(Sorry-USA, IBM -1 ,lap) =true 

T (ARC, IBM -1, Sony) = true T (IBM, IBM -1, Sony) = true 

T(lap, IBM -1, Sony) =true T(Sorry-USA, IBM -1, Sony) =true 

T (ARC, Sony -USA, 1 ap) = true T(IBM -1, Sony-USA, lap) =true 

T(IBM, Sony-USA, lap) =true T (Sony , Sony -USA , 1 ap) = true 

T(ARC, Sony-USA, /BM-1) =true T(IBM, Sony-USA, IBM -1) =true 

T(lap, Sony-USA, IBM-1) =true T(Sony, Sony-USA, IBM -1) =true 

T (ARC, Sony -USA , Sony) = true T (IBM -1, Sony -USA, Sony) = true 

T (IBM, Sony -USA , Sony) = true T(lap, Sony-USA, Sony) =true 
I 

l 

122 


